946 resultados para Phonological segmentation
Resumo:
Carrying out this research on the difficulties encountered by Bafoussam-Bamileke's native speakers learning English as their L2 helps to unveil many syntactic and phonological problems that require a great interest no only to teachers but also to learners in order to reach an acceptable level of accuracy and fluency. We have also provided some ways to solve those problems efficiently.
Resumo:
Speech is often a multimodal process, presented audiovisually through a talking face. One area of speech perception influenced by visual speech is speech segmentation, or the process of breaking a stream of speech into individual words. Mitchel and Weiss (2013) demonstrated that a talking face contains specific cues to word boundaries and that subjects can correctly segment a speech stream when given a silent video of a speaker. The current study expanded upon these results, using an eye tracker to identify highly attended facial features of the audiovisual display used in Mitchel and Weiss (2013). In Experiment 1, subjects were found to spend the most time watching the eyes and mouth, with a trend suggesting that the mouth was viewed more than the eyes. Although subjects displayed significant learning of word boundaries, performance was not correlated with gaze duration on any individual feature, nor was performance correlated with a behavioral measure of autistic-like traits. However, trends suggested that as autistic-like traits increased, gaze duration of the mouth increased and gaze duration of the eyes decreased, similar to significant trends seen in autistic populations (Boratston & Blakemore, 2007). In Experiment 2, the same video was modified so that a black bar covered the eyes or mouth. Both videos elicited learning of word boundaries that was equivalent to that seen in the first experiment. Again, no correlations were found between segmentation performance and SRS scores in either condition. These results, taken with those in Experiment, suggest that neither the eyes nor mouth are critical to speech segmentation and that perhaps more global head movements indicate word boundaries (see Graf, Cosatto, Strom, & Huang, 2002). Future work will elucidate the contribution of individual features relative to global head movements, as well as extend these results to additional types of speech tasks.
Resumo:
Speech is typically a multimodal phenomenon, yet few studies have focused on the exclusive contributions of visual cues to language acquisition. To address this gap, we investigated whether visual prosodic information can facilitate speech segmentation. Previous research has demonstrated that language learners can use lexical stress and pitch cues to segment speech and that learners can extract this information from talking faces. Thus, we created an artificial speech stream that contained minimal segmentation cues and paired it with two synchronous facial displays in which visual prosody was either informative or uninformative for identifying word boundaries. Across three familiarisation conditions (audio stream alone, facial streams alone, and paired audiovisual), learning occurred only when the facial displays were informative to word boundaries, suggesting that facial cues can help learners solve the early challenges of language acquisition.
Resumo:
The task considered in this paper is performance evaluation of region segmentation algorithms in the ground-truth-based paradigm. Given a machine segmentation and a ground-truth segmentation, performance measures are needed. We propose to consider the image segmentation problem as one of data clustering and, as a consequence, to use measures for comparing clusterings developed in statistics and machine learning. By doing so, we obtain a variety of performance measures which have not been used before in image processing. In particular, some of these measures have the highly desired property of being a metric. Experimental results are reported on both synthetic and real data to validate the measures and compare them with others.
Resumo:
PURPOSE: We evaluated the impact of premature extrauterine life on brain maturation. PATIENTS AND METHODS: Twelve neonates underwent MR imaging at 40 (39.64 +/- 0.98) weeks (full term). Fifteen premature infants underwent 2 MR imaging examinations, after birth (preterm at birth) and at 40 weeks (41.03 +/- 1.33) (preterm at term). A 3D MR imaging technique was used to measure brain volumes compared with intracranial volume: total brain volume, cortical gray matter, myelinated white matter, unmyelinated white matter, basal ganglia (BG), and CSF. RESULTS: The average absolute volume of intracranial volume (269.8 mL +/- 36.5), total brain volume (246.5 +/- 32.3), cortical gray matter (85.53 mL +/- 22.23), unmyelinated white matter (142.4 mL +/-14.98), and myelinated white matter (6.099 mL +/-1.82) for preterm at birth was significantly lower compared with that for the preterm at term: the average global volume of intracranial volume (431.7 +/- 69.98), total brain volume (391 +/- 66,1), cortical gray matter (179 mL +/- 41.54), unmyelinated white matter (185.3 mL +/- 30.8), and myelinated white matter (10.66 mL +/- 3.05). It was also lower compared with that of full-term infants: intracranial volume (427.4 mL +/- 53.84), total brain volume (394 +/- 49.22), cortical gray matter (181.4 +/- 29.27), unmyelinated white matter (183.4 +/- 27.37), and myelinated white matter (10.72 +/- 4.63). The relative volume of cortical gray matter (30.62 +/- 5.13) and of unmyelinated white matter (53.15 +/- 4.8) for preterm at birth was significantly different compared with the relative volume of cortical gray matter (41.05 +/- 5.44) and of unmyelinated white matter (43.22 +/- 5.11) for the preterm at term. Premature infants had similar brain tissue volumes at 40 weeks to full-term infants. CONCLUSION: MR segmentation techniques demonstrate that cortical neonatal maturation in moderately premature infants at term and term-born infants was similar.
Resumo:
Motivation: Array CGH technologies enable the simultaneous measurement of DNA copy number for thousands of sites on a genome. We developed the circular binary segmentation (CBS) algorithm to divide the genome into regions of equal copy number (Olshen {\it et~al}, 2004). The algorithm tests for change-points using a maximal $t$-statistic with a permutation reference distribution to obtain the corresponding $p$-value. The number of computations required for the maximal test statistic is $O(N^2),$ where $N$ is the number of markers. This makes the full permutation approach computationally prohibitive for the newer arrays that contain tens of thousands markers and highlights the need for a faster. algorithm. Results: We present a hybrid approach to obtain the $p$-value of the test statistic in linear time. We also introduce a rule for stopping early when there is strong evidence for the presence of a change. We show through simulations that the hybrid approach provides a substantial gain in speed with only a negligible loss in accuracy and that the stopping rule further increases speed. We also present the analysis of array CGH data from a breast cancer cell line to show the impact of the new approaches on the analysis of real data. Availability: An R (R Development Core Team, 2006) version of the CBS algorithm has been implemented in the ``DNAcopy'' package of the Bioconductor project (Gentleman {\it et~al}, 2004). The proposed hybrid method for the $p$-value is available in version 1.2.1 or higher and the stopping rule for declaring a change early is available in version 1.5.1 or higher.
Resumo:
OBJECTIVES: To determine the accuracy of automated vessel-segmentation software for vessel-diameter measurements based on three-dimensional contrast-enhanced magnetic resonance angiography (3D-MRA). METHOD: In 10 patients with high-grade carotid stenosis, automated measurements of both carotid arteries were obtained with 3D-MRA by two independent investigators and compared with manual measurements obtained by digital subtraction angiography (DSA) and 2D maximum-intensity projection (2D-MIP) based on MRA and duplex ultrasonography (US). In 42 patients undergoing carotid endarterectomy (CEA), intraoperative measurements (IOP) were compared with postoperative 3D-MRA and US. RESULTS: Mean interoperator variability was 8% for measurements by DSA and 11% by 2D-MIP, but there was no interoperator variability with the automated 3D-MRA analysis. Good correlations were found between DSA (standard of reference), manual 2D-MIP (rP=0.6) and automated 3D-MRA (rP=0.8). Excellent correlations were found between IOP, 3D-MRA (rP=0.93) and US (rP=0.83). CONCLUSION: Automated 3D-MRA-based vessel segmentation and quantification result in accurate measurements of extracerebral-vessel dimensions.
Resumo:
OBJECTIVE: To develop a novel application of a tool for semi-automatic volume segmentation and adapt it for analysis of fetal cardiac cavities and vessels from heart volume datasets. METHODS: We studied retrospectively virtual cardiac volume cycles obtained with spatiotemporal image correlation (STIC) from six fetuses with postnatally confirmed diagnoses: four with normal hearts between 19 and 29 completed gestational weeks, one with d-transposition of the great arteries and one with hypoplastic left heart syndrome. The volumes were analyzed offline using a commercially available segmentation algorithm designed for ovarian folliculometry. Using this software, individual 'cavities' in a static volume are selected and assigned individual colors in cross-sections and in 3D-rendered views, and their dimensions (diameters and volumes) can be calculated. RESULTS: Individual segments of fetal cardiac cavities could be separated, adjacent segments merged and the resulting electronic casts studied in their spatial context. Volume measurements could also be performed. Exemplary images and interactive videoclips showing the segmented digital casts were generated. CONCLUSION: The approach presented here is an important step towards an automated fetal volume echocardiogram. It has the potential both to help in obtaining a correct structural diagnosis, and to generate exemplary visual displays of cardiac anatomy in normal and structurally abnormal cases for consultation and teaching.
Resumo:
Map landscape-based segmentation of the sequences of momentary potential distribution maps (42-channel recordings) into brain microstates during spontaneous brain activity was used to study brain electric field spatial effects of single doses of piracetam (2.9, 4.8, and 9.6 g Nootropil® UCB and placebo) in a double-blind study of five normal young volunteers. Four 15-second epochs were analyzed from each subject and drug condition. The most prominent class of microstates (covering 49% of the time) consisted of potential maps with a generally anterior-posterior field orientation. The map orientation of this microstate class showed an increasing clockwise deviation from the placebo condition with increasing drug doses (Fisher's probability product, p < 0.014). The results of this study suggest the use of microstate segmentation analysis for the assessment of central effects of medication in spontaneous multichannel electroencephalographic data, as a complementary approach to frequency-domain analysis.
Resumo:
Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutual information (PMI). This similarity metric, termed SPMI, enhances the registration accuracy by considering tissue classification probabilities as prior information, which is generated from an expectation maximization (EM) algorithm. Diffeomorphic demons is then adopted as the registration model and is optimized in a hierarchical framework (H-SPMI) based on different levels of anatomical structure as prior knowledge. The proposed method is evaluated using Brainweb synthetic data and clinical fMRI images. Both qualitative and quantitative assessment were performed as well as a sensitivity analysis to the segmentation error. Compared to the pure intensity-based approaches which only maximize mutual information, we show that the proposed algorithm provides significantly better accuracy on both synthetic and clinical data.