974 resultados para Particle Number Concentration
Resumo:
Volatility-hygroscopicity tandem differential mobility analyzer measurements were used to infer the composition of sub-100 nm diameter Southern Ocean marine aerosols at Cape Grim in November and December 2007. This study focuses on a short-lived high sea spray aerosol (SSA) event on 7–8 December with two externally mixed modes in the Hygroscopic Growth Factor (HGF) distributions (90% relative humidity (RH)), one at HGF > 2 and another at HGF~1.5. The particles with HGF > 2 displayed a deliquescent transition at 73–75% RH and were nonvolatile up to 280°C, which identified them as SSA particles with a large inorganic sea-salt fraction. SSA HGFs were 3–13% below those for pure sea-salt particles, indicating an organic volume fraction (OVF) of up to 11–46%. Observed high inorganic fractions in sub-100 nm SSA is contrary to similar, earlier studies. HGFs increased with decreasing particle diameter over the range 16–97 nm, suggesting a decreased OVF, again contrary to earlier studies. SSA comprised up to 69% of the sub-100 nm particle number, corresponding to concentrations of 110–290 cm−3. Air mass back trajectories indicate that SSA particles were produced 1500 km, 20–40 h upwind of Cape Grim. Transmission electron microscopy (TEM) and X-ray spectrometry measurements of sub-100 nm aerosols collected from the same location, and at the same time, displayed a distinct lack of sea salt. Results herein highlight the potential for biases in TEM analysis of the chemical composition of marine aerosols.
Resumo:
Using a continuum Dirac theory, we study the density and spin response of zigzag edge-terminated graphene ribbons subjected to edge potentials and Zeeman fields. Our analytical calculations of the density and spin responses of the closed system (fixed particle number) to the static edge fields, show a highly nonlinear Weber-Fechner type behavior where the response depends logarithmically on the edge potential. The dependence of the response on the size of the system (e.g., width of a nanoribbon) is also uncovered. Zigzag edge graphene nanoribbons, therefore, provide a realization of response of organs such as the eye and ear that obey Weber-Fechner law. We validate our analytical results with tight-binding calculations. These results are crucial in understanding important effects of electron-electron interactions in graphene nanoribbons such as edge magnetism, etc., and also suggest possibilities for device applications of graphene nanoribbons.
Resumo:
Black carbon (BC) aerosol mass concentrations measured using an aethalometer at Anantapur, a semi-arid tropical station in the southern part of peninsular India, from August 2006 to July 2007 are analyzed. Seasonal and diurnal variations of BC in relation to changes in the regional meteorological conditions have been studied along with the mass fraction of BC to the total aerosol mass concentration (M-t) and fine particle mass (FPM) concentration in different months. The data collected during the study period shows that the annual average BC mass concentration at Anantapur is 1.97 +/- 0.12 mu g m(-3). Seasonal variations of BC aerosol mass concentration showed high during the dry (winter and summer) seasons and low during the post-monsoon followed by the monsoon seasons. Diurnal variations of BC aerosols attain a gradual build up in BC concentration from morning and a sharp peak occurs between 07:00 and 09:00 h almost an hour after local sunrise and a broad nocturnal peak from 19:00 to 21:00 h with a minimum in noon hours. The ratio of BC to the fine particle mass concentration was high during the dry season and low during the monsoon season. The regression analysis between BC mass concentration and wind speed indicates that, with increase in wind speeds the BC mass concentrations would decrease and vice-versa. Aerosol BC mass concentration shows a significant positive correlation with total mass concentration (M-t) and aerosol optical depth (ACID, tau(p)) at 500 nm. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We study the effect of acoustic streaming on nanoparticle motion and morphological evolution inside an acoustically levitated droplet using an analytical approach coupled with experiments. Nanoparticle migration due to internal recirculation forms a density stratification, the location of which depends on initial particle concentration. The time scale of density stratification is similar to that of perikinetic-driven agglomeration of particle flocculation. The density stratification ultimately leads to force imbalance leading to a unique bowl-shaped structure. Our analysis shows the mechanism of bowl formation and how it is affected by particle size, concentration, internal recirculation and fluid viscosity.
Resumo:
The present paper studies numerical modelling of near-wall two-phase flows induced by a normal shock wave moving at a constant speed, over a micronsized particles bed. In this two-fluid model, the possibility of particle trajectory intersection is considered and a full Lagrangian formulation of the dispersed phase is introduced. The finiteness of the Reynolds and Mach numbers of the flow around a particle as well as the fineness of the particle sizes are taken into account in describing the interactions between the carrier- and dispersed- phases. For the small mass-loading ratio case, the numerical simulation of flow structure of the two phases is implemented and the profiles of the particle number density are obtained under the constant-flux condition on the wall. The effects of the shock Mach number and the particle size and material density on particle entrainment motion are discussed in detail.The obtained results indicate that interphase non-equilibrium in the velocity and temperature is a common feature for this type of flows and a local particle accumulation zone may form near the envelope of the particle trajectory family.
Resumo:
Poly(dimethylsiloxane) (PDMS) is usually considered as a dielectric material and the PDMS microchannel wall can be treated as an electrically insulated boundary in an applied electric field. However, in certain layouts of microfluidic networks, electrical leakage through the PDMS microfluidic channel walls may not be negligible, which must be carefully considered in the microfluidic circuit design. In this paper, we report on the experimental characterization of the electrical leakage current through PDMS microfluidic channel walls of different configurations. Our numerical and experimental studies indicate that for tens of microns thick PDMS channel walls, electrical leakage through the PDMS wall could significantly alter the electrical field in the main channel. We further show that we can use the electrical leakage through the PDMS microfluidic channel wall to control the electrolyte flow inside the microfluidic channel and manipulate the particle motion inside the microfluidic channel. More specifically, we can trap individual particles at different locations inside the microfluidic channel by balancing the electroosmotic flow and the electrophoretic migration of the particle.
Resumo:
Experimental work was performed to delineate the system of digested sludge particles and associated trace metals and also to measure the interactions of sludge with seawater. Particle-size and particle number distributions were measured with a Coulter Counter. Number counts in excess of 1012 particles per liter were found in both the City of Los Angeles Hyperion mesophilic digested sludge and the Los Angeles County Sanitation Districts (LACSD) digested primary sludge. More than 90 percent of the particles had diameters less than 10 microns.
Total and dissolved trace metals (Ag, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were measured in LACSD sludge. Manganese was the only metal whose dissolved fraction exceeded one percent of the total metal. Sedimentation experiments for several dilutions of LACSD sludge in seawater showed that the sedimentation velocities of the sludge particles decreased as the dilution factor increased. A tenfold increase in dilution shifted the sedimentation velocity distribution by an order of magnitude. Chromium, Cu, Fe, Ni, Pb, and Zn were also followed during sedimentation. To a first approximation these metals behaved like the particles.
Solids and selected trace metals (Cr, Cu, Fe, Ni, Pb, and Zn) were monitored in oxic mixtures of both Hyperion and LACSD sludges for periods of 10 to 28 days. Less than 10 percent of the filterable solids dissolved or were oxidized. Only Ni was mobilized away from the particles. The majority of the mobilization was complete in less than one day.
The experimental data of this work were combined with oceanographic, biological, and geochemical information to propose and model the discharge of digested sludge to the San Pedro and Santa Monica Basins. A hydraulic computer simulation for a round buoyant jet in a density stratified medium showed that discharges of sludge effluent mixture at depths of 730 m would rise no more than 120 m. Initial jet mixing provided dilution estimates of 450 to 2600. Sedimentation analyses indicated that the solids would reach the sediments within 10 km of the point discharge.
Mass balances on the oxidizable chemical constituents in sludge indicated that the nearly anoxic waters of the basins would become wholly anoxic as a result of proposed discharges. From chemical-equilibrium computer modeling of the sludge digester and dilutions of sludge in anoxic seawater, it was predicted that the chemistry of all trace metals except Cr and Mn will be controlled by the precipitation of metal sulfide solids. This metal speciation held for dilutions up to 3000.
The net environmental impacts of this scheme should be salutary. The trace metals in the sludge should be immobilized in the anaerobic bottom sediments of the basins. Apparently no lifeforms higher than bacteria are there to be disrupted. The proposed deep-water discharges would remove the need for potentially expensive and energy-intensive land disposal alternatives and would end the discharge to the highly productive water near the ocean surface.
Resumo:
A realistic quantum many-body system, characterized by a generic microscopic Hamiltonian, is accessible only through approximation methods. The mean field theories, as the simplest practices of approximation methods, commonly serve as a powerful tool, but unfortunately often violate the symmetry of the Hamiltonian. The conventional BCS theory, as an excellent mean field approach, violates the particle number conservation and completely erases quantumness characterized by concurrence and quantum discord between different modes. We restore the symmetry by using the projected BCS theory and the exact numerical solution and find that the lost quantumness is synchronously reestablished. We show that while entanglement remains unchanged with the particle numbers, quantum discord behaves as an extensive quantity with respect to the system size. Surprisingly, discord is hardly dependent on the interaction strengths. The new feature of discord offers promising applications in modern quantum technologies.
Resumo:
Current fluctuations can provide additional insight into quantum transport in mesoscopic systems. The present work is carried out for the fluctuation properties of transport through a pair of coupled quantum dots which are connected with ferromagnetic electrodes. Based on an efficient particle-number-resolved master equation approach, we are concerned with not only fluctuations of the total charge and spin currents, but also of each individual spin-dependent component. As a result of competition among the spin polarization, Coulomb interaction, and dot-dot tunnel coupling, rich behaviors are found for the self- and mutual-correlation functions of the spin-dependent currents.
Resumo:
Crystal formation process of charged colloidal particles is investigated using Brownian dynamics (BD) simulations. The particles are assumed to interact with the pair-additive repulsive Yukawa potential. The time evolution of crystallization process and the crystal structure during the simulation are characterized by means of the radial distribution functions (RDF) and mean square displacement (MSD). The simulations show that when the interaction is featured with long-range, particles can spontaneously assemble into body-centered-cubic (BCC) arrays at relatively low particle number density. When the interaction is short-ranged, with increasing the number density particles become trapped into a stagnant disordered configuration before the crystallization could be actualized. The simulations further show that as long as the trapped configurations are bypassed, the face-centered-cubic (FCC) structures can be achieved and are actually more stable than BCC structures. (C) 2010 Elsevier Inc. All rights reserved.
Spectral dispersion of cloud droplet size distributions and radar threshold reflectivity for drizzle
Resumo:
A novel combination of laser light scattering (LLS) and the micronization of a water-insoluble polymer into narrowly distributed nanoparticles stable in water has provided not only an accurate, reliable and microscopic method to study polymer biodegradation, but also a novel and fast way to evaluate the biodegradability of a given polymer. Using poly(epsilon-caprolactone) (PCL) as a typical example, we have shown that its biodegradation time can be shortened by a factor of more than 10(3) times in comparison with the time required to biodegrade a thin film (10 x 10 x 0.1 mm(3)). Moreover, the biodegradation kinetics can be in-situ monitored in terms of the decrease of the time-average scattering intensity and the particle number. A comparison of static and dynamic LLS results revealed that the enzyme, Lipase Pseudomonas, ''eats'' the PCL nanoparticles in an one-by-one manner and the enzymatic biodegradation of PCL follows a zero-order kinetics. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
An intense isotropic source of multicharged carbon and oxygen ions with energy above 300 keV and particle number >108 per shot was obtained by femtosecond Ti:Sa laser irradiation of submicron clusters. The source was employed for high-contrast contact ionography images with 600 nm spatial resolution. A variation in object thickness of 100 nm was well resolved for both Zr and polymer foils.
Resumo:
A chain of singly charged particles, confined by a harmonic potential, exhibits a sudden transition to a zigzag configuration when the radial potential reaches a critical value, depending on the particle number. This structural change is a phase transition of second order, whose order parameter is the crystal displacement from the chain axis. We study analytically the transition using Landau theory and find full agreement with numerical predictions by Schiffer [Phys. Rev. Lett. 70, 818 (1993)] and Piacente [Phys. Rev. B 69, 045324 (2004)]. Our theory allows us to determine analytically the system's behavior at the transition point.
Resumo:
The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove & McKee progenitor with an envelope mass of 10 M-circle dot and an energy of 1.5 x 10(44) J. A termination shock in the progenitor's stellar wind at a distance of 0 ''.43-0 ''.51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0 ''.63 +/- 0 ''.01 and maximum particle number density of (7.11 +/- 1.78) x 10(7) m(-3) produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.