995 resultados para Particle Detection
Resumo:
LHC has found hints for a Higgs particle of 125 GeV. We investigate the possibility that such a particle is a mixture of scalar and pseudoscalar states. For definiteness, we concentrate on a two-Higgs doublet model with explicit CP violation and soft Z(2) violation. Including all Higgs production mechanisms, we determine the current constraints obtained by comparing h -> yy with h -> VV*, and comment on the information which can be gained by measurements of h -> b (b) over bar. We find bounds vertical bar s(2)vertical bar less than or similar to 0.83 at one sigma, where vertical bar s(2)vertical bar = 0 (vertical bar s(2)vertical bar = 1) corresponds to a pure scalar (pure pseudoscalar) state.
Resumo:
Structures experience various types of loads along their lifetime, which can be either static or dynamic and may be associated to phenomena of corrosion and chemical attack, among others. As a consequence, different types of structural damage can be produced; the deteriorated structure may have its capacity affected, leading to excessive vibration problems or even possible failure. It is very important to develop methods that are able to simultaneously detect the existence of damage and to quantify its extent. In this paper the authors propose a method to detect and quantify structural damage, using response transmissibilities measured along the structure. Some numerical simulations are presented and a comparison is made with results using frequency response functions. Experimental tests are also undertaken to validate the proposed technique. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Optical colour sensors based on multilayered a-SiC:H heterostructures can act as voltage controlled optical filters in the visible range. In this article we investigate the application of these structures for Fluorescence Resonance Energy Transfer (FRET) detection, The characteristics of a-SiC:H multilayered structure are studied both theoretically and experimentally in several wavelengths corresponding to different fluorophores. The tunable optical p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures were produced by PECVD and tested for a proper fine tuning in the violet, cyan and yellow wavelengths. The devices were characterized through transmittance and spectral response measurements, under different electrical bias and frequencies. Violet, cyan and yellow signals were applied in simultaneous and results have shown that they can be recovered under suitable applied bias. A theoretical analysis supported by numerical simulation is presented.
Resumo:
We study a model consisting of particles with dissimilar bonding sites ("patches"), which exhibits self-assembly into chains connected by Y-junctions, and investigate its phase behaviour by both simulations and theory. We show that, as the energy cost epsilon(j) of forming Y-junctions increases, the extent of the liquid-vapour coexistence region at lower temperatures and densities is reduced. The phase diagram thus acquires a characteristic "pinched" shape in which the liquid branch density decreases as the temperature is lowered. To our knowledge, this is the first model in which the predicted topological phase transition between a fluid composed of short chains and a fluid rich in Y-junctions is actually observed. Above a certain threshold for epsilon(j), condensation ceases to exist because the entropy gain of forming Y-junctions can no longer offset their energy cost. We also show that the properties of these phase diagrams can be understood in terms of a temperature-dependent effective valence of the patchy particles. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3605703]
Resumo:
This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.
Resumo:
This paper proposes a particle swarm optimization (PSO) approach to support electricity producers for multiperiod optimal contract allocation. The producer risk preference is stated by a utility function (U) expressing the tradeoff between the expectation and variance of the return. Variance estimation and expected return are based on a forecasted scenario interval determined by a price range forecasting model developed by the authors. A certain confidence level is associated to each forecasted scenario interval. The proposed model makes use of contracts with physical (spot and forward) and financial (options) settlement. PSO performance was evaluated by comparing it with a genetic algorithm-based approach. This model can be used by producers in deregulated electricity markets but can easily be adapted to load serving entities and retailers. Moreover, it can easily be adapted to the use of other type of contracts.
Resumo:
Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.
Resumo:
Short-term risk management is highly dependent on long-term contractual decisions previously established; risk aversion factor of the agent and short-term price forecast accuracy. Trying to give answers to that problem, this paper provides a different approach for short-term risk management on electricity markets. Based on long-term contractual decisions and making use of a price range forecast method developed by the authors, the short-term risk management tool presented here has as main concern to find the optimal spot market strategies that a producer should have for a specific day in function of his risk aversion factor, with the objective to maximize the profits and simultaneously to practice the hedge against price market volatility. Due to the complexity of the optimization problem, the authors make use of Particle Swarm Optimization (PSO) to find the optimal solution. Results from realistic data, namely from OMEL electricity market, are presented and discussed in detail.
Resumo:
The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.
Resumo:
OBJECTIVE: To comparatively detect A. actinomycetemcomitans and F. nucleatum from periodontal and healthy sites. METHODS: Subgingival clinical samples from 50 periodontitis adult patients and 50 healthy subjects were analyzed. Both organisms were isolated using a trypticase soy agar-bacitracin-vancomycin (TSBV) medium and detected by PCR. Conventional biochemical tests were used for bacteria identification. RESULTS: A. actinomycetemcomitans and F. nucleatum were isolated in 18% and 20% of the patients, respectively, and in 2% and 24% of healthy subjects. Among A. actinomycetemcomitans isolates, biotype II was the most prevalent. Primer pair AA was 100% sensitive in the detection of A. actinomycetemcomitans from both subject groups. Primers ASH and FU were also 100% sensitive to detect this organism in healthy subject samples. Primer pair FN5047 was more sensitive to detect F. nucleatum in patients or in healthy samples than primer 5059S. Primers ASH and 5059S were more specific in the detection of A. actinomycetemcomitans and F. nucleatum, respectively, in patients and in healthy subject samples. CONCLUSIONS: PCR is an effective tool for detecting periodontal pathogens in subgingival samples, providing a faster and safer diagnostic tool of periodontal diseases. The method's sensitivity and specificity is conditioned by the choice of the set of primers used.
Resumo:
In order to evaluate the capacity of laser scanning cytometry (LSC) to detect acid-fast bacilli directly on clinical samples, a comparison between Kinyoun-stained smears analyzed under light microscopy and propidium iodide-auramine-stained smears analyzed by LSC was performed. The results were compared with those for culture on BACTEC MGIT 960. LSC is a new, reliable methodology to detect Mycobacteria.
Resumo:
The transducer consists of a semiconductor device based on two stacked -i-n heterostructures that were designed to detect the emissions of the fluorescence resonance energy transfer between fluorophores in the cyan (470 nm) and yellow (588 nm) range of the spectrum. This research represents a preliminary study on the use of such wavelength-sensitive devices as photodetectors for this kind of application. The device was characterized through optoelectronic measurements concerning spectral response measurements under different electrical and optical biasing conditions. To simulate the fluorescence resonance energy transfer (FRET) pairs, a chromatic time-dependent combination of cyan and yellow wavelengths was applied to the device. The generated photocurrent was measured under reverse and forward bias to read out the output photocurrent signal. A different wavelength-biasing light was also superimposed. Results show that under reverse bias, the photocurrent signal presents four separate levels, each one assigned to the different wavelength combinations of the FRET pairs. If a blue background is superimposed, the yellow channel is enhanced and the cyan suppressed, while under red irradiation, the opposite behavior occurs. So, under suitable biasing light, the transducer is able to detect separately the cyan and yellow fluorescence pairs. An electrical model, supported by a numerical simulation, supports the transduction mechanism of the device.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The formation of amyloid structures is a neuropathological feature that characterizes several neurodegenerative disorders, such as Alzheimer´s and Parkinson´s disease. Up to now, the definitive diagnosis of these diseases can only be accomplished by immunostaining of post mortem brain tissues with dyes such Thioflavin T and congo red. Aiming at early in vivo diagnosis of Alzheimer´s disease (AD), several amyloid-avid radioprobes have been developed for b-amyloid imaging by positron emission tomography (PET) and single-photon emission computed tomography (SPECT). The aim of this paper is to present a perspective of the available amyloid imaging agents, special those that have been selected for clinical trials and are at the different stages of the US Food and Drugs Administration (FDA) approval.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores