676 resultados para PURINE NUCLEOSIDE PHOSPHORYLASE
Resumo:
We present an overview of the long-term adaptation of hippocampal neurotransmission to cholinergic and GABAergic deafferentation caused by excitotoxic lesion of the medial septum. Two months after septal microinjection of 2.7 nmol a -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), a 220% increase of GABA A receptor labelling in the hippo- campal CA3 and the hilus was shown, and also changes in hippocampal neurotransmission characterised by in vivo microdialysis and HPLC. Basal amino acid and purine extra- cellular levels were studied in control and lesioned rats. In vivo effects of 100 m M KCl perfusion and adenosine A 1 receptor blockade with 1,3-dipropyl- 8-cyclopentylxanthine (DPCPX) on their release were also investigated. In lesioned animals GABA, glutamate and glutamine basal levels were decreased and taurine, adenosine and uric acid levels increased. A similar response to KCl infusion occurred in both groups except for GABA and glutamate, which release decreased in lesioned rats. Only in lesioned rats, DPCPX increased GABA basal level and KCl-induced glutamate release, and decreased glutamate turnover. Our results evidence that an excitotoxic septal lesion leads to increased hippocampal GABA A receptors and decreased glutamate neurotransmis- sion. In this situation, a co-ordinated response of hippocampal retaliatory systems takes place to control neuron excitability.
Resumo:
Chlorambucil is an anticancer agent used in the treatment of a variety of cancers, especially in chronic lymphocytic leukemia, and autoimmune diseases. Nevertheless, chlorambucil is potentially mutagenic, teratogenic and carcinogenic. The high antitumor activity and high toxicity of chlorambucil and its main metabolite, phenylacetic acid mustard, to normal tissues have been known for a long time. Despite this, no detailed chemical data on their reactions with biomolecules in aqueous media have been available. The aim of the work described in this thesis was to analyze reactions of chlorambucil with 2’-deoxyribonucleosides and calf thymus DNA in aqueous buffered solution, at physiological pH, and to identify and characterize all adducts by using modern analyzing methods. Our research was also focused on the reactions of phenylacetic acid mustard with 2’-deoxynucleosides under similar conditions. A review of the literature consisting of general background of nucleic acids, alkylating agents and ultraviolet spectroscopy used to identify the purine and pyrimidine nucleosides, as well as the results from experimental work are presented and discussed in this doctoral thesis.
Resumo:
Microbiológica is a science-based Brazilian Company with its core competence focused on nucleoside process chemistry. This article describes its origin and contributions as well as comments on public policies which impact the Brazilian industrial development.
Resumo:
The development of new antiretroviral drugs is a dynamic process that is continuously fueled by identification of new molecular targets and new compounds for know targets. The current available drugs can be classified into five categories: nucleoside analogues reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors and entry inhibitors (fusion inhibitors and CCR5 antagonist). In addition, the maturation inhibitors may be considered as potential target for chemotherapeutic intervention. This review presents some anti-HIV agents that have already gone through the advance development process for final approval for the treatment of AIDS.
Resumo:
RNA is essential for all living organisms. It has important roles in protein synthesis, controlling gene expression as well as catalyzing biological reactions. Chemically RNA is a very stable molecule, although in biological systems many agents catalyze the cleavage of RNA, such as naturally occurring enzymes and ribozymes. Much effort has been put in the last decades in developing highly active artificial ribonucleases since such molecules could have potential in the therapeutic field and provide tools for molecular biology. Several potential catalysts have emerged, but usually detailed cleavage mechanism remains unresolved. This thesis is aimed at clarifying mechanistic details of the cleavage and isomerization of RNA by using simpler nucleoside models of RNA. The topics in the experimental part cover three different studies, one concerning the mechanism of catalysis by large ribozymes, one dealing with the reactivity of modified and unmodified RNA oligonucleotides and one showing an efficient catalysis of the cleavage and isomerization of an RNA phosphodiester bond by a dinuclear metal ion complex. A review of the literature concerning stabilization of the phosphorane intermediate of the hydrolysis and isomerization of RNA phosphodiester bond is first presented. The results obtained in the experimental work followed by mechanistic interpretations are introduced in the second part of the thesis. Especially the significance of hydrogen bonding interactions is discussed.
Resumo:
Experiments were designed to study in-vivo effects of sodium cyanide on biochemical endpoints in the freshwater fish Labeo rohita. Fish were exposed to two sublethal concentrations (0.106 and 0.064mg/L) for a period of 15 days. Levels of glycogen, pyruvate, lactate and the enzymatic activities of lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), glucose-6-phosphate dehydrogenase (G6PDH), phosphorylase, alkaline phosphatase (ALP), acid phosphatase (AcP) were assessed in different tissues (liver, muscle and gills). Result indicated a steady decrease in glycogen, pyruvate, SDH, ALP and AcP activity with a concomitant increase in the lactate, phosphorylase, LDH and G6PD activity in all selected tissues. The alterations in all the above biochemical parameters were significantly (p<0.05) time and dose dependent. In all the above parameters, liver pointing out the intensity of cyanide intoxication compare to muscle and gills. Study revealed change in the metabolic energy by means of altered metabolic profile of the fish. Further, these observations indicated that even sublethal concentrations of sodium cyanide might not be fully devoid of deleterious influence on metabolism in L. rohita.
Resumo:
Chemical modifications were used to identify some of the functionally important amino acid residues of the potato plant uncoupling protein (StUCP). The proton-dependent swelling of potato mitochondria in K+-acetate in the presence of linoleic acid and valinomycin was inhibited by mersalyl (Ki = 5 µM) and other hydrophilic SH reagents such as Thiolyte MB, iodoacetate and 5,5'-dithio-bis-(2-nitrobenzoate), but not by hydrophobic N-ethylmaleimide. This pattern of inhibition by SH reagents was similar to that of brown adipose tissue uncoupling protein (UCP1). As with UCP1, the arginine reagent 2,3-butadione, but not N-ethylmaleimide or other hydrophobic SH reagents, prevented the inhibition of StUCP-mediated transport by ATP in isolated potato mitochondria or with reconstituted StUCP. The results indicate that the most reactive amino acid residues in UCP1 and StUCP are similar, with the exception of N-ethylmaleimide-reactive cysteines in the purine nucleotide-binding site.
Resumo:
Sertoli cells have been shown to be targets for extracellular purines such as ATP and adenosine. These purines evoke responses in Sertoli cells through two subtypes of purinoreceptors, P2Y2 and P A1. The signals to purinoreceptors are usually terminated by the action of ectonucleotidases. To demonstrate these enzymatic activities, we cultured rat Sertoli cells for four days and then used them for different assays. ATP, ADP and AMP hydrolysis was estimated by measuring the Pi released using a colorimetric method. Adenosine deaminase activity (EC 3.5.4.4) was determined by HPLC. The cells were not disrupted after 40 min of incubation and the enzymatic activities were considered to be ectocellularly localized. ATP and ADP hydrolysis was markedly increased by the addition of divalent cations to the reaction medium. A competition plot demonstrated that only one enzymatic site is responsible for the hydrolysis of ATP and ADP. This result indicates that the enzyme that acts on the degradation of tri- and diphosphate nucleosides on the surface of Sertoli cells is a true ATP diphosphohydrolase (EC 3.6.1.5) (specific activities of 113 ± 6 and 21 ± 2 nmol Pi mg-1 min-1 for ATP and ADP, respectively). The ecto-5'-nucleotidase (EC 3.1.3.5) and ectoadenosine deaminase activities (specific activities of 32 ± 2 nmol Pi mg-1 min-1 for AMP and 1.52 ± 0.13 nmol adenosine mg-1 min-1, respectively) were shown to be able to terminate the effects of purines and may be relevant for the physiological control of extracellular levels of nucleotides and nucleosides inside the seminiferous tubules.
Resumo:
A concurrent prospective study was conducted from 2001 to 2003 to assess factors associated with adverse reactions among individuals initiating antiretroviral therapy at two public referral HIV/AIDS centers in Belo Horizonte, MG, Brazil. Adverse reactions were obtained from medical charts reviewed up to 12 months after the first antiretroviral prescription. Cox proportional hazard model was used to perform univariate and multivariate analyses. Relative hazards (RH) were estimated with 95% confidence intervals (CI). Among 397 charts reviewed, 377 (95.0%) had precise information on adverse reactions and initial antiretroviral treatment. Most patients received triple combination regimens including nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors and protease inhibitors. At least one adverse reaction was recorded on 34.5% (N = 130) of the medical charts (0.17 adverse reactions/100 person-day), while nausea (14.5%) and vomiting (13.1%) were the most common ones. Variables independently associated with adverse reactions were: regimens with nevirapine (RH = 1.78; 95% CI = 1.07-2.96), indinavir or indinavir/ritonavir combinations (RH = 2.05; 95% CI = 1.15-3.64), female patients (RH = 1.93; 95% CI = 1.31-2.83), 5 or more outpatient visits (RH = 1.94; 95% CI = 1.25-3.01), non-adherence to antiretroviral therapy (RH = 2.38; 95% CI = 1.62-3.51), and a CD4+ count of 200 to 500 cells/mm³ (RH = 2.66; 95% CI = 1.19-5.90). An independent and negative association was also found for alcohol use (RH = 0.55; 95% CI = 0.33-0.90). Adverse reactions were substantial among participants initiating antiretroviral therapy. Specially elaborated protocols in HIV/AIDS referral centers may improve the diagnosis, management and prevention of adverse reactions, thus contributing to improving adherence to antiretroviral therapy among HIV-infected patients.
Resumo:
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system CNS), where inflammation and neurodegeneration lead to irreversible neuronal damage. In MS, a dysfunctional immune system causes auto‐reactive lymphocytes to migrate into CNS where they initiate an inflammatory cascade leading to focal demyelination, axonal degeneration and neuronal loss. One of the hallmarks of neuronal injury and neuroinflammation is the activation of microglia. Activated microglia are found not only in the focal inflammatory lesions, but also diffusely in the normal‐appearing white matter (NAWM), especially in progressive MS. The purine base, adenosine is a ubiquitous neuromodulator in the CNS and also participates in the regulation of inflammation. The effect of adenosine mediated via adenosine A2A receptors has been linked to microglial activation, whereas modulating A2A receptors may exert neuroprotective effects. In the majority of patients, MS presents with a relapsing disease course, later advancing to a progressive phase characterised by a worsening, irreversible disability. Disease modifying treatments can reduce the severity and progression in relapsing MS, but no efficient treatment exists for progressive MS. The aim of this research was to investigate the prevalence of adenosine A2A receptors and activated microglia in progressive MS by using in vivo positron emission tomography (PET) imaging and [11C]TMSX and [11C](R)‐PK11195 radioligands. Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) was performed to evaluate structural brain damage. Non‐invasive input function methods were also developed for the analyses of [11C]TMSX PET data. Finally, histopathological correlates of [11C](R)‐PK11195 radioligand binding related to chronic MS lesions were investigated in post‐mortem samples of progressive MS brain using autoradiography and immunohistochemistry. [11C]TMSX binding to A2A receptors was increased in NAWM of secondary progressive MS (SPMS) patients when compared to healthy controls, and this correlated to more severe atrophy in MRI and white matter disintegration (reduced fractional anisotropy, FA) in DTI. The non‐invasive input function methods appeared as feasible options for brain [11C]TMSX images obviating arterial blood sampling. [11C](R)‐PK11195 uptake was increased in the NAWM of SPMS patients when compared to patients with relapsing MS and healthy controls. Higher [11C](R)‐PK11195 binding in NAWM and total perilesional area of T1 hypointense lesions was associated with more severe clinical disability, increased brain atrophy, higher lesion load and reduced FA in NAWM in the MS patients. In autoradiography, increased perilesional [11C](R)‐PK11195 uptake was associated with increased microglial activation identified using immunohistochemistry. In conclusion, brain [11C]TMSX PET imaging holds promise in the evaluation of diffuse neuroinflammation in progressive MS. Being a marker of microglial activation, [11C](R)‐ PK11195 PET imaging could possibly be used as a surrogate biomarker in the evaluation of the neuroinflammatory burden and clinical disease severity in progressive MS.
Resumo:
The aim of this study was to determine the impact of antiretroviral therapy on the lipid profile of human immunodeficiency virus (HIV) patients before and after the initiation of highly active antiretroviral therapy (HAART). This was a cross-sectional analysis of patients receiving HAART at a reference center in Belo Horizonte, Brazil, on the basis of medical records from 2002 to 2006. Patients were included if they had at least one lipid test or a clinical or laboratory diagnosis of dyslipidemia/lipodystrophy. Among the 692 patients, 620 met the eligibility criteria. The majority were males (66.5%), middle age (average 39 years), had a low educational level (60.4%), and low income (51.0%). HAART duration ranged from 11 days to 4.6 years, with a mean of 28.6 months (SD = ± 470.19 days). The prevalence of dyslipidemia/lipodystrophy nearly tripled (11.3% pre- and 32.4% post-HAART). Dyslipidemia was associated with older age (P = 0.007), nucleoside reverse transcriptase inhibitor (NRTI) + protease inhibitor (PI) regimens (P = 0.04), NRTI + non-NRTI (NNRTI) regimens (P = 0.026), the use of stavudine (d4T) in any regimen (P = 0.002) or in NRTI-based regimens (P = 0.006), and longer exposure to HAART (P < 0.000). In addition, there was no correlation between dyslipidemia and gender (P = 0.084). Only 2.0% of the patients received treatment for dyslipidemia during the trial. These results show a need for continuous monitoring of patients under antiretroviral therapy, particularly those using NRTI-based regimens, especially when combined with d4T and PIs. Secondly, interventions should be developed to correct metabolic changes.
Resumo:
Antiviral nucleosides are compounds that are used against viruses, such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV). To act as therapeutic agent, the antiviral nucleoside needs to be phosphorylated to nucleotide in the body in three consecutive phosphorylation steps by cellular or viral enzymes. The first phosphorylation to the nucleoside monophosphate is often inefficient and leads to poor antiviral activity. The antiviral efficacy can be improved by applying a prodrug strategy and delivering the antiviral nucleoside directly as its monophosphate. In prodrug strategies of antiviral nucleotides, the negative charges on the phosphate moiety are temporarily masked with protecting groups. Once inside the cell, the protecting groups are removed by enzymatic or chemical processes. Many prodrug strategies apply biodegradable protecting groups, the removal of which is triggered by esterase enzymes. Several studies have, however, demonstrated that the removal rate of the second and subsequent esterase labile protecting groups significantly slows down after the first protecting group is removed due to the negative charge on the phosphodiester intermediate, which disturbs the catalytic site of the enzyme. In this thesis, esterase labile protecting group strategies where the issue of retardation could be avoided were studied. Prodrug candidates of antiviral nucleotides were synthesized and kinetic studies on the chemical and enzymatic stability were carried out. In the synthesized compounds, the second protecting group is cleaved from the monophosphate some other mechanism than esterase triggered activation or the structure of prodrug requires only one protecting group. In addition, esterase labile protecting group which is additionally thermally removable was studied. This protecting group was cleaved from oligomeric phosphodiesters both enzymatically and thermally and seems most attractive of the studied phosphate protecting groups. However, the rate of the thermal removal still is too slow to allow efficient protection of longer oligonucleotides and needs optimization. Key words: antiviral, nucleotide, prodrug, protecting group, biodegradable
Resumo:
Small non-coding RNAs have numerous biological functions in cell and are divided into different classes such as: microRNA, snoRNA, snRNA and siRNA. MicroRNA (miRNA) is the most studied non-coding RNA to date and is found in plants, animals and some viruses. miRNA with short sequences is involved in suppressing translation of target genes by binding to their mRNA post-transcriptionally and silencing it. Their function besides silencing of the viral gene, can be oncogenic and therefore the cause of cancer. Hence, their roles are highlighted in human diseases, which increases the interest in using them as biomarkers and drug targets. One of the major problems to overcome is recognition of miRNA. Owing to a stable hairpin structure, chain invasion by conventional Watson-Crick base-pairing is difficult. One way to enhance the hybridization is exploitation of metal-ion mediated base-pairing, i. e. oligonucleotide probes that tightly bind a metal ions and are able to form a coordinative bonds between modified and natural nucleobases. This kind of metallo basepairs containing short modified oligonucleotides can also be useful for recognition of other RNA sequences containing hairpin-like structural motives, such as the TAR sequence of HIV. In addition, metal-ion-binding oligonucleotides will undoubtedly find applications in DNA-based nanotechnology. In this study, the 3,5-dimethylpyrazol-1-yl substituted purine derivatives were successfully incorporated within oligonucleotides, into either a terminal or non-terminal position. Among all of the modified oligonucleotides studied, a 2-(3,5-dimethylpyrazol-1-yl)-6-oxopurine base containing oligonucleotide was observed to bind most efficiently to their unmodified complementary sequences in the presence of both Cu2+ or Zn2+. The oligonucleotide incorporating 2,6-bis(3,5-dimethylpyrazol-1-yl)purine base also markedly increased the stability of duplexes in the presence of Cu2+ without losing the selectivity.
Resumo:
Metal-ion-mediated base-pairing of nucleic acids has attracted considerable attention during the past decade, since it offers means to expand the genetic code by artificial base-pairs, to create predesigned molecular architecture by metal-ion-mediated inter- or intra-strand cross-links, or to convert double stranded DNA to a nano-scale wire. Such applications largely depend on the presence of a modified nucleobase in both strands engaged in the duplex formation. Hybridization of metal-ion-binding oligonucleotide analogs with natural nucleic acid sequences has received much less attention in spite of obvious applications. While the natural oligonucleotides hybridize with high selectivity, their affinity for complementary sequences is inadequate for a number of applications. In the case of DNA, for example, more than 10 consecutive Watson-Crick base pairs are required for a stable duplex at room temperature, making targeting of sequences shorter than this challenging. For example, many types of cancer exhibit distinctive profiles of oncogenic miRNA, the diagnostics of which is, however, difficult owing to the presence of only short single stranded loop structures. Metallo-oligonucleotides, with their superior affinity towards their natural complements, would offer a way to overcome the low stability of short duplexes. In this study a number of metal-ion-binding surrogate nucleosides were prepared and their interaction with nucleoside 5´-monophosphates (NMPs) has been investigated by 1H NMR spectroscopy. To find metal ion complexes that could discriminate between natural nucleobases upon double helix formation, glycol nucleic acid (GNA) sequences carrying a PdII ion with vacant coordination sites at a predetermined position were synthesized and their affinity to complementary as well as mismatched counterparts quantified by UV-melting measurements.
Resumo:
Chicl( brain growth factor (CBGF) is a mitogen isolated from embryonic chick brains thought to have a potential role as a trophic factor involved in nerve dependent amphibian limb regeneration. In addition, CBGF stimulates 3H-thymidine incorporation in chick embryo brain astrocytes in vitro. In this study, cultured chick embryo brain non-neuronal cells were employed in a bioassay to monitor CBGF activity throughout various stages of its pllrification. Cell culture and assay conditions were optimized. Nonneuronal cells grew best on collagen-coated culture dishes in complete medium, were most responsive to a growth stimulus [10% fetal bovine serum (FBS)] at the second and third subcultures, and were healthiest when rendered "quiescent" in medium supplemented with 1% FBS. The most effective bioassay conditions consisted of a minimum 14.5 hour "quiescence" time (24 hours was used), a 6 hour "prestimulation" time, and a 24 hour 3H-thymidine labeling time. Four-day subconfluent primary non-neuronal cells consisted of 6.63% GFAP positive cells; as a result cultures were thought to be mainly composed of astroblasts. CBGF was purified from 18-day chick embryo brains by ultrafiltration through Amicon PM-30 and YM-2 membranes, size exclusion chromatography through a Biogel P6 column, and analytical reverse-phase high-performance liquid chromatography (rp-HPLC). The greatest activity resided in rp-HPLC fraction #7 (10 ng/ml) which was as effective as 10% FBS at stimulating 3H-thymidine incorporation in chick embryo brain nonneuronal cells. Although other researchers report the isolation of a mitogenic fraction consisting of 5'-GMP from the embryonic chick brain, UV absorbance spectra, rp-HPLC elution profiles, and fast atom bombardment (FAB) mass spectra indicated that CBGF is neither 5'-GMP nor 51-AMP. 2 Moreover, commercially available 5t-GMP was inhibitory to 3H-thymidine incorporation in the chick non-neuronal cells, while Sf-AMP had no effect. Upon treatment with pronase, the biological activity of fraction P6-3 increased; this increase was nearly 30% greater than what would be expected from a simple additive effect of any mitogenic activity of pronase alone together with P6-3 alone. This may suggest the presence of an inhibitor protein. The bioactive component may be a protein protected by a nucleoside/nucleotide or simply a nucleoside/nucleotide acting alone. While the FAB mass spectrum of rp-HPLC fraction #7 did not reveal molecular weight or sequence information, the ion of highest molecular weight was observed at m/z 1610; this is consistent with previous estimations of CBGF's size. 3