940 resultados para PUMP-PROBE PHOTOIONIZATION
Resumo:
Rotary blood pumps (RBPs) running at a constant speed are routinely used for the mechanical support of the heart in various clinical applications, from short-term use in heart-lung machines to long-term support of a failing heart. Their operating range is delineated by suction and regurgitation events, leaving limited control on the cardiac workload. This study investigates whether different ratios of systolic/diastolic support are advantageous over a constant-speed operation.
Resumo:
This paper presents a novel mock circulation for the evaluation of ventricular assist devices (VADs), which is based on a hardware-in-the-loop concept. A numerical model of the human blood circulation runs in real time and computes instantaneous pressure, volume, and flow rate values. The VAD to be tested is connected to a numerical-hydraulic interface, which allows the interaction between the VAD and the numerical model of the circulation. The numerical-hydraulic interface consists of two pressure-controlled reservoirs, which apply the computed pressure values from the model to the VAD, and a flow probe to feed the resulting VAD flow rate back to the model. Experimental results are provided to show the proper interaction between a numerical model of the circulation and a mixed-flow blood pump.
Resumo:
Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of polyunsaturated fatty acids into conjugated diene hydroperoxides. The three dimensional structure of SBLO-1 is known, but it is not certain how substrates bind. One hypothesis involves the transient separation of helix-2 and helix-11 located on the exterior of the molecule in front of the active site iron. A second hypothesis involves a conformational change in the side chains of residues leucine 541 and threonine 259. To test these hypotheses, site directed mutagenesis was used to create a cysteine mutation on each helix, which could allow for the formation of a disulfide linkage. Disulfide formation between the two cysteines in the T259C,S545C mutant was found to be unfavorable, but later shown to be present at higher pH values using SDS-PAGE. Treatment of the T259C,S545C with the crosslinker 2,3-dibromomaleimide (DBM) resulted in a 50% reduction in catalytic activity. No loss of activity was observed when the single mutant, S545C, or the wild type was treated with DBM. Single mutants T259C and L541C both showed approximately 20% reduction in the rate after addition of DBM. Double mutants T259C,L541C and S263C,S545C showed approximately 30% reduction in the rate after addition of DBM. Single mutants T259C and L541C showed an increase in activity after incubation with NEM. Double mutants T259C,S545C and T259C,L541C showed an increase in activity after incubation with NEM. The S263C,S545C double mutant showed a slight decrease in activity in the presence of NEM. It is unclear how the NEM and DBM are interacting with the molecule, but this can easily be determined through mass spectrometry experiments.
Resumo:
A prototype vortex-driven air lift pump was developed and experimentally evaluated. It was designed to be easily manufactured and scalable for arbitrary riser diameters. The model tested fit in a 2 inch diameter riser with six air injection nozzles through which airwas injected helically around the perimeter of the riser at an angle of 70º from pure tangential injection. The pump was intended to transport both water and sediment over a large range of submergence ratios. A test apparatus was designed to be able to simulate deep water or oceanic environments. The resulting test setup had a finite reservoir; over the course of a test, the submergence ratio varied from 0.48 to 0.39. For air injection pressures ranging from 10 to 60 psig and for air flow rates of 6 to 15 scfm, the induced water discharge flow rates varied only slightly, due to the limited range of available submergence ratios. The anticipated simulation of deep water environment, with a corresponding equivalent increase in thesubmergence ratio, proved unattainable. The pump prototype successfully transported both water and sediment (sand). Thepercent volume yield of the sediment was in an acceptable range. The pump design has been subsequently used successfully in a 4 inch configuration in a follow-on project. A computer program was written in Matlab to simulate the pump characteristics. The program output water pressures at the location of air injection which were physicallycompatible with the experimental data.
Resumo:
Purpose: Mismatches between pump output and venous return in a continuous-flow ventricular assist device may elicit episodes of ventricular suction. This research describes a series of in vitro experiments to characterize the operating conditions under which the EVAHEART centrifugal blood pump (Sun Medical Technology Research Corp., Nagano, Japan) can be operated with minimal concern regarding left ventricular (LV) suction. Methods: The pump was interposed into a pneumatically driven pulsatile mock circulatory system (MCS) in the ventricular apex to aorta configuration. Under varying conditions of preload, afterload, and systolic pressure, the speed of the pump was increased step-wise until suction was observed. Identification of suction was based on pump inlet pressure. Results: In the case of reduced LV systolic pressure, reduced preload (=10 mmHg), and afterload (=60 mmHg), suction was observed for speeds =2,200 rpm. However, suction did not occur at any speed (up to a maximum speed of 2,400 rpm) when preload was kept within 10-14 mmHg and afterload =80 mmHg. Although in vitro experiments cannot replace in vivo models, the results indicated that ventricular suction can be avoided if sufficient preload and afterload are maintained. Conclusion: Conditions of hypovolemia and/or hypotension may increase the risk of suction at the highest speeds, irrespective of the native ventricular systolic pressure. However, in vitro guidelines are not directly transferrable to the clinical situation; therefore, patient-specific evaluation is recommended, which can be aided by ultrasonography at various points in the course of support.
Resumo:
Myocardial depression after cardiac surgery is modulated by cardiopulmonary bypass (CPB) and the underlying heart disease. The sodium pump is a key component for myocardial function. We hypothesized that the change in sodium pump expression during CPB correlates with intraoperative and postoperative laboratory and clinical parameters in neonates and children with various congenital heart defects. Sodium pump isoforms alpha1 (ATP1A1) and alpha3 (ATP1A3) mRNA expression in right atrial myocardium, excised before and after CPB, was quantified. Groups were assigned according to presence (VO group, n = 8) or absence (NO group, n = 8) of right atrial volume overload. CPB and aortic clamp time correlated with postoperative troponin-I values and ICU stay. ATP1A1 (P = 0.008) and ATP1A3 (P = 0.038) mRNA expression were significantly reduced during CPB. Longer aortic clamp times were associated with lower postoperative ATP1A1 (P = 0.045) and ATP1A3 (P = 0.002) mRNA expression. Low postoperative ATP1A1 (P = 0.043) and ATP1A3 (P = 0.002) expressions were associated with high troponin-I values. These results were restricted to the VO group. No correlation of sodium pump mRNA expression was found with the duration of ICU stay or ventilation. The postoperative troponin-I and clinical parameters correlated with the length of CPB, regardless of volume overload. In contrast, only dilated right atrium seemed to be susceptible to CPB in terms of sodium pump expression, showing a reduction during the operation and a correlation of sodium pump with postoperative troponin-I values.
Resumo:
Episodes of respiratory distress with chest retraction and wheezing, sometimes associated with facial edema, were noted after administering the proton pump inhibitors omeprazole and esomeprazole in an infant with gastroesophageal reflux. The disturbances relieved dramatically after withdrawing the proton pump inhibitor.