946 resultados para POSTEXERCISE OXYGEN-CONSUMPTION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To assess the influence of skeletal muscle mass on ventilatory and hemodynamic variables during exercise in patients with chronic heart failure (CHF). METHODS: Twenty-five male patients underwent maximum cardiopulmonary exercise testing on a treadmill with a ramp protocol and measurement of the skeletal muscle mass of their thighs by using magnetic resonance imaging. The clinically stable, noncachectic patients were assessed and compared with 14 healthy individuals (S) paired by age and body mass index, who underwent the same examinations. RESULTS: Similar values of skeletal muscle mass were found in both groups (CHF group: 3863 ± 874 g; S group: 3743 ± 540 g; p = 0.32). Significant correlations of oxygen consumption in the anaerobic threshold (CHF: r = 0.39; P= 0.02 and S: r = 0.14; P = 0.31) and of oxygen pulse also in the anaerobic threshold (CHF: r = 0.49; P = 0.01 and S: r =0.12; P = 0.36) were found only in the group of patients with chronic heart failure. CONCLUSION: The results obtained indicate that skeletal muscle mass may influence the capacity of patients with CHF to withstand submaximal effort, due to limitations in their physical condition, even maintaining a value similar to that of healthy individuals. This suggests qualitative changes in the musculature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A presente dissertação pretendeu verificar o efeito de um programa de exercício supervisionado versus domiciliário, de intensidade moderada, com a duração de 16 semanas, na aptidão física de pessoas com fibromialgia. Houve necessidade de ajustamento dos objetivos e analisaram-se os dados obtidos no primeiro momento de avaliação, pretendendo-se analisar a relação entre variáveis de aptidão física, contribuindo para a compreensão da aptidão física de pessoas com fibromialgia. Apresentam-se e analisam-se variáveis de aptidão física e os resultados do efeito do exercício a nível de composição corporal, capacidade cardiorrespiratória e capacidade funcional. Neste âmbito realizaram-se 5 estudos. No estudo I analisou-se a precisão de diferentes equações preditivas de consumo de oxigénio, que utilizam a distância caminhada no teste de marcha de 6 minutos e propõe-se uma atualização para a equação específica para esta população. No estudo II observou-se a relação entre o consumo de oxigénio, composição corporal e força muscular. No estudo III avaliou-se a precisão de equações preditivas de composição corporal utilizando pregas adiposas e a densitometria de raio-X de dupla energia como método de referência. No estudo IV verificou-se qual o índice que melhor reflete a composição corporal destas mulheres. No estudo V analisou-se a associação entre a frequência cardíaca de recuperação, após um teste de esforço máximo e o consumo de oxigénio. Os principais resultados reforçam os resultados anteriores de que a população estudada apresenta diminuição da aptidão física, da capacidade funcional e valores de composição corporal indicativos de excesso de peso. Não apresentaram alterações autonómicas e verificou-se que a distância caminhada durante o teste de marcha de 6 minutos, a idade, percentagem de massa gorda e a massa magra apendicular são preditores do VO2 pico. Após a intervenção as participantes apresentaram alterações positivas a nível da aptidão física.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: No studies have described and evaluated the association between hemodynamics, physical limitations and quality of life in patients with pulmonary hypertension (PH) without concomitant cardiovascular or respiratory disease. Objective: To describe the hemodynamic profile, quality of life and physical capacity of patients with PH from groups I and IV and to study the association between these outcomes. Methods: Cross-sectional study of patients with PH from clinical groups I and IV and functional classes II and III undergoing the following assessments: hemodynamics, exercise tolerance and quality of life. Results: This study assessed 20 patients with a mean age of 46.8 ± 14.3 years. They had pulmonary capillary wedge pressure of 10.5 ± 3.7 mm Hg, 6-minute walk distance test (6MWDT) of 463 ± 78 m, oxygen consumption at peak exercise of 12.9 ± 4.3 mLO2.kg-1.min-1 and scores of quality of life domains < 60%. There were associations between cardiac index (CI) and ventilatory equivalent for CO2 (r=-0.59, p <0.01), IC and ventilatory equivalent for oxygen (r=-0.49, p<0.05), right atrial pressure (RAP) and 'general health perception' domain (r=-0.61, p<0.01), RAP and 6MWTD (r=-0.49, p<0.05), pulmonary vascular resistance (PVR) and 'physical functioning' domain (r=-0.56, p<0.01), PVR and 6MWTD (r=-0.49, p<0.05) and PVR index and physical capacity (r=-0.51, p<0.01). Conclusion: Patients with PH from groups I and IV and functional classes II and III exhibit a reduction in physical capacity and in the physical and mental components of quality of life. The hemodynamic variables CI, diastolic pulmonary arterial pressure, RAP, PVR and PVR index are associated with exercise tolerance and quality of life domains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background:Circulatory power (CP) and ventilatory power (VP) are indices that have been used for the clinical evaluation of patients with heart failure; however, no study has evaluated these indices in patients with coronary artery disease (CAD) without heart failure.Objective:To characterize both indices in patients with CAD compared with healthy controls.Methods:Eighty-seven men [CAD group = 42 subjects and healthy control group (CG) = 45 subjects] aged 40–65 years were included. Cardiopulmonary exercise testing was performed on a treadmill and the following parameters were measured: 1) peak oxygen consumption (VO2), 2) peak heart rate (HR), 3) peak blood pressure (BP), 4) peak rate-pressure product (peak systolic HR x peak BP), 5) peak oxygen pulse (peak VO2/peak HR), 6) oxygen uptake efficiency (OUES), 7) carbon dioxide production efficiency (minute ventilation/carbon dioxide production slope), 8) CP (peak VO2 x peak systolic BP) and 9) VP (peak systolic BP/carbon dioxide production efficiency).Results:The CAD group had significantly lower values for peak VO2 (p < 0.001), peak HR (p < 0.001), peak systolic BP (p < 0.001), peak rate-pressure product (p < 0.001), peak oxygen pulse (p = 0.008), OUES (p < 0.001), CP (p < 0.001), and VP (p < 0.001) and significantly higher values for peak diastolic BP (p = 0.004) and carbon dioxide production efficiency (p < 0.001) compared with CG. Stepwise regression analysis showed that CP was influenced by group (R2 = 0.44, p < 0.001) and VP was influenced by both group and number of vessels with stenosis after treatment (interaction effects: R2 = 0.46, p < 0.001).Conclusion:The indices CP and VP were lower in men with CAD than healthy controls.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AbstractBackground:Heart failure with preserved ejection fraction is a syndrome characterized by changes in diastolic function; it is more prevalent among the elderly, women, and individuals with systemic hypertension (SH) and diabetes mellitus. However, in its early stages, there are no signs of congestion and it is identified in tests by adverse remodeling, decreased exercise capacity and diastolic dysfunction.Objective:To compare doppler, echocardiographic (Echo), and cardiopulmonary exercise test (CPET) variables - ergospirometry variables - between two population samples: one of individuals in the early stage of this syndrome, and the other of healthy individuals.Methods:Twenty eight outpatients diagnosed with heart failure according to Framingham’s criteria, ejection fraction > 50% and diastolic dysfunction according to the european society of cardiology (ESC), and 24 healthy individuals underwent Echo and CPET.Results:The group of patients showed indexed atrial volume and left ventricular mass as well as E/E’ and ILAV/A´ ratios significantly higher, in addition to a significant reduction in peak oxygen consumption and increased VE/VCO2 slope, even having similar left ventricular sizes in comparison to those of the sample of healthy individuals.Conclusion:There are significant differences between the structural and functional variables analyzed by Echo and CPET when comparing two population samples: one of patients in the early stage of heart failure with ejection fraction greater than or equal to 50% and another of healthy individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: The purpose of this study was to develop a mathematical model (sine model, SIN) to describe fat oxidation kinetics as a function of the relative exercise intensity [% of maximal oxygen uptake (%VO2max)] during graded exercise and to determine the exercise intensity (Fatmax) that elicits maximal fat oxidation (MFO) and the intensity at which the fat oxidation becomes negligible (Fatmin). This model included three independent variables (dilatation, symmetry, and translation) that incorporated primary expected modulations of the curve because of training level or body composition. METHODS: Thirty-two healthy volunteers (17 women and 15 men) performed a graded exercise test on a cycle ergometer, with 3-min stages and 20-W increments. Substrate oxidation rates were determined using indirect calorimetry. SIN was compared with measured values (MV) and with other methods currently used [i.e., the RER method (MRER) and third polynomial curves (P3)]. RESULTS: There was no significant difference in the fitting accuracy between SIN and P3 (P = 0.157), whereas MRER was less precise than SIN (P < 0.001). Fatmax (44 +/- 10% VO2max) and MFO (0.37 +/- 0.16 g x min(-1)) determined using SIN were significantly correlated with MV, P3, and MRER (P < 0.001). The variable of dilatation was correlated with Fatmax, Fatmin, and MFO (r = 0.79, r = 0.67, and r = 0.60, respectively, P < 0.001). CONCLUSIONS: The SIN model presents the same precision as other methods currently used in the determination of Fatmax and MFO but in addition allows calculation of Fatmin. Moreover, the three independent variables are directly related to the main expected modulations of the fat oxidation curve. SIN, therefore, seems to be an appropriate tool in analyzing fat oxidation kinetics obtained during graded exercise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effects of insulin upon glucose metabolism were investigated in chick embryos explanted in vitro during the first 30 h of incubation. Insulin stimulated the glucose consumption of the chick gastrula (18 h) and neurula (24 h), but had no effect on the late blastula (0 h:laying) and on the stage of six to eight somites (30 h). The increase in glucose consumption concerned both the embryonic area pellucida (AP) and extraembryonic area opaca (AO). AP responded to a greater extent (50%) and at a lower range of concentrations (0.1-1.0 ng/ml) than AO (30%; 1-100 ng/ml). Insulin had no effect on the oxygen consumption of blastoderms, whereas it stimulated the aerobic lactate production (approximately 70% of the additional glucose consumption was converted to lactate). The nanomolar range of stimulating concentrations suggests that insulin has a specific effect in the chick embryo, and that it could modulate glucose metabolism in ovo as well. The transient sensitivity of the embryo to insulin is discussed in relation to behavior of mesodermal cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relationship between metabolism and reactive oxygen species (ROS) production by the mitochondria has often been (wrongly) viewed as straightforward, with increased metabolism leading to higher generation of pro-oxidants. Insights into mitochondrial functioning show that oxygen consumption is principally coupled with either energy conversion as ATP or as heat, depending on whether the ATP-synthase or the mitochondrial uncoupling protein 1 (UCP1) is driving respiration. However, these two processes might greatly differ in terms of oxidative costs. We used a cold challenge to investigate the oxidative stress consequences of an increased metabolism achieved either by the activation of an uncoupled mechanism (i.e. UCP1 activity) in the brown adipose tissue (BAT) of wild-type mice or by ATP-dependent muscular shivering thermogenesis in mice deficient for UCP1. Although both mouse strains increased their metabolism by more than twofold when acclimatised for 4 weeks to moderate cold (12°C), only mice deficient for UCP1 suffered from elevated levels of oxidative stress. When exposed to cold, mice deficient for UCP1 showed an increase of 20.2% in plasmatic reactive oxygen metabolites, 81.8% in muscular oxidized glutathione and 47.1% in muscular protein carbonyls. In contrast, there was no evidence of elevated levels of oxidative stress in the plasma, muscles or BAT of wild-type mice exposed to cold despite a drastic increase in BAT activity. Our study demonstrates differing oxidative costs linked to the functioning of two highly metabolically active organs during thermogenesis, and advises careful consideration of mitochondrial functioning when investigating the links between metabolism and oxidative stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intermittent hypoxic exposure with exercise training is based on the assumption that brief exposure to hypoxia is sufficient to induce beneficial muscular adaptations mediated via hypoxia-inducible transcription factors (HIF). We previously demonstrated (Mounier et al. Med Sci Sports Exerc 38:1410-1417, 2006) that leukocytes respond to hypoxia with a marked inter-individual variability in HIF-1alpha mRNA. This study compared the effects of 3 weeks of intermittent hypoxic training on hif gene expression in both skeletal muscle and leukocytes. Male endurance athletes (n = 19) were divided into an Intermittent Hypoxic Exposure group (IHE) and a Normoxic Training group (NT) with each group following a similar 3-week exercise training program. After training, the amount of HIF-1alpha mRNA in muscle decreased only in IHE group (-24.7%, P < 0.05) whereas it remained unchanged in leukocytes in both groups. The levels of vEGF(121) and vEGF(165) mRNA in skeletal muscle increased significantly after training only in the NT group (+82.5%, P < 0.05 for vEGF(121); +41.2%, P < 0.05 for vEGF(165)). In leukocytes, only the IHE group showed a significant change in vEGF(165) (-28.2%, P < 0.05). The significant decrease in HIF-1alpha mRNA in skeletal muscle after hypoxic training suggests that transcriptional and post-transcriptional regulations of the hif-1alpha gene are different in muscle and leukocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES: The thermogenic effect of amrinone is unknown and its utilization in patients with severe cardiac failure could potentially increase oxygen requirements and therefore aggravate oxygen debt. Consequently, the present study was undertaken to assess the thermogenic response to amrinone at three different plasma concentrations under controlled conditions and to analyze amrinone's effects on various biochemical variables. DESIGN: A prospective, unblinded, controlled study. The initial control period was followed by three sequential, experimental treatments. SUBJECTS: Ten young, healthy, male volunteers with normal body weight. INTERVENTIONS: Three experimental periods. Amrinone was administered intravenously in progressive doses: a) 0.5 mg/kg followed by 5 micrograms/kg/min; b) 0.5 mg/kg followed by 10 micrograms/kg/min; and c) 1.0 mg/kg followed by 10 micrograms/kg/min. MEASUREMENTS AND MAIN RESULTS: Oxygen consumption (VO2) and CO2 production were continuously measured by means of a computerized indirect calorimeter. At the highest dose, amrinone produced a slight and significant (p < .01) increase in VO2 and in resting metabolic rate (+4.5% and +3.7%, respectively), while no change in CO2 production or in respiratory quotient occurred throughout the study. At the medium and high doses, amrinone increased plasma free fatty acid concentrations by 38% and 53%, respectively (p < .05). No variation in plasma glucose, lactate, insulin, norepinephrine, or epinephrine concentrations was observed during the study. CONCLUSIONS: Amrinone administered intravenously at therapeutic doses has minimal thermogenic and metabolic effects in humans without cardiac failure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this review was to provide a synopsis of the literature concerning the physiological differences between cycling and running. By comparing physiological variables such as maximal oxygen consumption (V O(2max)), anaerobic threshold (AT), heart rate, economy or delta efficiency measured in cycling and running in triathletes, runners or cyclists, this review aims to identify the effects of exercise modality on the underlying mechanisms (ventilatory responses, blood flow, muscle oxidative capacity, peripheral innervation and neuromuscular fatigue) of adaptation. The majority of studies indicate that runners achieve a higher V O(2max) on treadmill whereas cyclists can achieve a V O(2max) value in cycle ergometry similar to that in treadmill running. Hence, V O(2max) is specific to the exercise modality. In addition, the muscles adapt specifically to a given exercise task over a period of time, resulting in an improvement in submaximal physiological variables such as the ventilatory threshold, in some cases without a change in V O(2max). However, this effect is probably larger in cycling than in running. At the same time, skill influencing motor unit recruitment patterns is an important influence on the anaerobic threshold in cycling. Furthermore, it is likely that there is more physiological training transfer from running to cycling than vice versa. In triathletes, there is generally no difference in V O(2max) measured in cycle ergometry and treadmill running. The data concerning the anaerobic threshold in cycling and running in triathletes are conflicting. This is likely to be due to a combination of actual training load and prior training history in each discipline. The mechanisms surrounding the differences in the AT together with V O(2max) in cycling and running are not largely understood but are probably due to the relative adaptation of cardiac output influencing V O(2max) and also the recruitment of muscle mass in combination with the oxidative capacity of this mass influencing the AT. Several other physiological differences between cycling and running are addressed: heart rate is different between the two activities both for maximal and submaximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than in running. It has also been shown that pedalling cadence affects the metabolic responses during cycling but also during a subsequent running bout. However, the optimal cadence is still debated. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.

Relevância:

80.00% 80.00%

Publicador: