971 resultados para POLYPHENYLENE SULFIDE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal analysis of metal sulfate hydrazinates, MSO4·xN2H4 (I) (M=Mn, Co, Ni, Zn, Cd; x = 2–3), hydrazinium metal sulfates, (N2H5)2M(SO4)2 (II) (M=Mn, Cu, Zn, Cd), and N2H5LiSO4 have been studied using simultaneous TG-DTGDTA. Both types of complexes, I and II, decompose to the respective metal sulfates or a mixture of metal sulfide and sulfate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This letter explores the structural behavior of nanocrystalline tin mono sulfide (SnS) structures with respect to temperature (100-600 K). These studies emphasize that the structural properties of SnS nanocrystalline structures depend on the surrounding temperature. The lattice parameters of SnS nanocrystals slightly varied like their microstructures with the increase of temperature. These changes strongly influence the optical properties of SnS nanostructures. On the other hand, the structures exhibited higher strain (similar to 0.44%) than that of microstructured (0.3%) and bulk (0.12%) counterparts. The observed results are discussed under the light of existing concepts and reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cobalt(III) complexes [Co(pnt)(B)(2)](NO3)(2) (1-3) of pyridine-2-thiol (pnt) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2',3'-c] phenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The crystal structure of 1a as mixed ClO4- and PF6- salt of 1 shows a (CoN5S)-N-III coordination geometry in which the pnt and phen showed N,S- and N,N-donor binding modes, respectively. The complexes exhibit Co(III)/Co(II) redox couple near -0.3 V (vs. SCE) in 20% DMF-Tris-HCl buffer having 0.1 M TBAP. The complexes show binding propensity to calf thymus DNA giving K-b values within 2.2 x 10(4)-7.3 x 10(5) M-1. Thermal melting and viscosity data suggest DNA surface and/or groove binding of the complexes. The complexes show significant anaerobic DNA cleavage activity in red light under argon atmosphere possibly involving sulfide anion radical or thiyl radical species. The DNA cleavage reaction under aerobic medium in red light is found to involve both singlet oxygen and hydroxyl radical pathways. The dppz complex 3 shows non-specific BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via both hydroxyl and singlet oxygen pathways. The dppz complex 3 exhibits photocytotoxicity in HeLa cervical cancer cells giving IC50 values of 767 nM and 19.38 mu M in UV-A light of 365 nm and in the dark, respectively. A significant reduction of the dark toxicity of the dppz base (IC50 = 8.34 mu M in dark) is observed on binding to the cobalt(III) center.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The divergent role of microbes in the field of mineral processing starting from mining and beneficiation to efficient waste disposal has been well recognized now. The roles of various microorganisms and bioreagents in the beneficiation of minerals are illustrated in this paper. Various types of microorganisms useful in bringing about selective flotation and flocculation of various oxide and sulfide minerals are illustrated. Interfacial phenomena governing microbe-mineral interactions are discussed with reference to bacterial cell wall architecture, cell surface hydrophobicity, electrokinetic data, and adsorption behavior on various minerals. Applications of microbially induced mineral beneficiation are demonstrated with respect to beneficiation of iron ores, bauxite, limestone, and complex multimetal sulfides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct contact mechanism in bioleaching implies prior mineral adhesion of Acidithiobacillus ferrooxidans and subsequent enzymatic attack.Prior bacterial adaptation to sulfide mineral substrates influences bacterial ferrous ion oxidation rates. It is highly beneficial to understand major biooxidation mechanisms with reference to solution- and mineral-grown cells in order to optimize bioleaching reactions. For A. ferrooxidans grown in the presence of solid substrates such as sulfur, pyrite and chalcopyrite, bacterial adhesion is required for its enzymatic machinery to come into close contact for mineral dissolution.But when grown in solution substrate such as ferrous ions and thiosulfate, such an adhesion machinery is not required for substrate utilization. Proteinaceous compounds were observed on the surface of sulfur-grown cells. Such an induction of relatively hydrophobic proteins and down regulation of exposed polysaccharides leads to changes in cell surface chemistry. Sulfur-grown and pyrite- and chalcopyrite-grown bacterial cells were found to be more efficient in the bioleaching of chalcopyrite than those grown in the presence of ferrous ions and thiosulfate. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tin sulfide (SnS) nanostructures have been synthesized using a simple and low temperature chemical solution method on seeded substrates, and their structural and optical properties have been investigated. The as-grown SnS nanostructures with well-defined facets exhibited good stoichiometry between constituent elements. These nanobox structures are preferentially oriented along the 010] direction by having 100] and 001] orientations as surrounding facets and exhibited Two distinguishable optical band gaps of 1.36 and 1.9 eV. The effect of solution concentration as well as seed layer on the morphology or SnS structures has also been studied, and finally, the growth mechanism of the regular SnS nanobox structures is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the biological system's ability to detoxify these reactive intermediates. Mammalian cells have elaborate antioxidant defense mechanisms to control the damaging effects of ROS. Glutathione peroxidase (GPx), a selenoenzyme, plays a key role in protecting the organism from oxidative damage by catalyzing the reduction of harmful hydroperoxides with thiol a ``catalytic triad'' with tryptophan and glutamine, which cofactors. The selenocysteine residue at the active site forms activates the selenium moiety for an efficient reduction of peroxides. After the discovery that ebselen, a synthetic organoselenium compound, mimics the catalytic activity of GPx both in vitro and in vivo, several research groups developed a number of small-molecule selenium compounds as functional mimics of GPx, either by modifying the basic structure of ebselen or by incorporating some structural features of the native enzyme. The synthetic mimics reported in the literature can be classified in three major categories: (i) cyclic selenenyl amides having a Se-N bond, (ii) diaryl diselenides, and (iii) aromatic or aliphatic monoselenides. Recent studies show that ebselen exhibits very poor GPx activity when aryl or benzylic thiols such as PhSH or BnSH are used as cosubstrates. Because the catalytic activity of each GPx mimic largely depends on the thiol cosubstrates used, the difference in the thiols causes the discrepancies observed in different studies. In this Account, we demonstrate the effect of amide and amine substituents on the GPx activity of various organoselenium compounds. The existence of strong Se ... O/N interactions in the selenenyl sulfide intermediates significantly reduces the GPx activity. These interactions facilitate an attack of thiol at selenium rather than at sulfur, leading to thiol exchange reactions that hamper the formation of catalytically active selenol. Therefore, any substituent capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds. Interestingly, replacement of the sec-amide substituent by a tert-amide group leads to a weakening of Se ... 0 interactions in the selenenyl sulfide intermediates. This modification results in 10- to 20-fold enhancements in the catalytic activities. Another strategy involving the replacement of tert-amide moieties by tert-amino substituents further increases the activity by 3- to 4-fold. The most effective modification so far in benzylamine-based GPx mimics appears to be either the replacement of a tert-amino substituent by a sec-amino group or the introduction of an additional 6-methoxy group in the phenyl ring. These strategies can contribute to a remarkable enhancement in the GPx activity. In addition to enhancing catalytic activity, a change in the substituents near the selenium moiety alters the catalytic mechanisms. The mechanistic investigations of functional mimics are useful not only for understanding the complex chemistry at the active site of GPx but also for designing and synthesizing novel antioxidants and anti-inflammatory agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline metals frequently exhibit poor thermal stability, and the exothermic peak in differential scanning calorimetry is usually attributed to grain growth. We show from experiments on electrodeposited nano-Ni with varying levels of S, and tests with microcrystalline Ni and S powders, that the exothermic peak is associated with the formation of a nickel sulfide phase and concurrent grain growth. Analysis suggests that segregation plays a more important role in limiting grain growth than second-phase particles in nano-Ni. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sulphide capacity as originally defined by Fincham and Richardson is a strong function of composition in pseudobinary oxide melts of interest in extractive metallurgy. From an analysis of data available in the literature, it is shown that sulphide capacity is directly proportional to the activity of the basic oxide in the melt, within the uncertainty of experimental data. A single parameter is sufficient to describe the sulphide capacity of a binary slag system under isothermal and isobaric conditions. The correlation indicates that the activity coefficient of the sulphide ion or the neutral base metal sulphide dissolved in the melt is independent of composition in pseudobinary melts within experimental uncertainty. Structural variations in the melt with composition do not seem to affect the activity coefficient of the sulphide. A modified sulphide capacity function is defined which makes the treatment more elegant and greatly simplifies data storage and retrieval. The modified function is not based on any model for the melt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tin sulfide (SnS) is a material of interest for use as an absorber in low cost solar cells. Single crystals of SnS were grown by the physical vapor deposition technique. The grown crystals were characterized to evaluate the composition, structure, morphology, electrical and optical properties using appropriate techniques. The composition analysis indicated that the crystals were nearly stoichiometric with Sn-to-S atomic percent ratio of 1.02. Study of their morphology revealed the layered type growth mechanism with low surface roughness. The grown crystals had orthorhombic structure with (0 4 0) orientation. They exhibited an indirect optical band gap of 1.06 eV and direct band gap of 1.21 eV with high absorption coefficient (up to 10(3) cm(-1)) above the fundamental absorption edge. The grown crystals were of p-type with an electrical resistivity of 120 Omega cm and carrier concentration 1.52 x 10(15) cm(-3). Analysis of optical absorption and diffuse reflectance spectra showed the presence of a wide absorption band in the wavelength range 300-1200 nm, which closely matches with a significant part of solar radiation spectrum. The obtained results were discussed to assess the suitability of the SnS crystal for the fabrication of optoelectronic devices. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal degradation products of two sulfur polymers, poly(styrenedisulfide) (PSD) and poly(styrenetetrasulfide) (PST), were investigated in parallel by direct pyrolysis-mass spectrometry (DPMS) and by flash pyrolysis-GC/MS (Py-GC/MS). The time-scale of the two pyrolysis techniques is quite different, and therefore they were able to detect significantly different products in the pyrolysis of PSD and PST because of the thermal lability of sulfur-containing compounds. However, the results obtained are not contradictory, and satisfactory mechanisms for the thermal degradation of PSD and PST have been derived from the overall evidence available. Pyrolysis compounds containing sulfur, styrene, and a number of cyclic styrene sulfides and diphenyldithianes have been observed by DPMS. However, in flash pyrolysis-GC/MS, styrene, sulfur, only one cyclic styrene sulfide, and two isomers of diphenylthiophene have been detected. These thiophene derivatives were indeed absent among the compounds obtained by DPMS because they were the terminal (most thermally stable) species arising from further decomposition of the cyclic styrene sulfides formed in the primary thermal degradation processes of PSD and PST.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The charge-transfer complexes of I-2 with the n-donors diethyl ether and diethyl sulfide were studied at the Hartree-Fock and MP2 levels. The structures were fully optimized using the 3-21G((*)) basis set as well as with effective core potentials. The calculations consistently yield a C-2v structure for the ether-I-2 complex, but an unsymmetrical form for the sulfide-I-2 complex. A natural bond orbital analysis and the BSSE-corrected complexation energies reveal stronger interactions in the sulfide complex. The computed orbital energies of the monomers and complexes reproduce the trends in experimentally observed vertical ionization potentials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is the first report on the analysis of random block polysulfide copolymers containing different amounts of repeating units in the copolymer backbone, which has been studied by direct pyrolysis mass spectrometry (DPMS) and by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The homopolymers such as poly(ethylene sulfide) (PES), poly(styrene sulfide) (PSS), and two random copolymers, viz., poly(ethylene sulfide(x)-co-styrene sulfide(y)) [copolymer I (x = y = 0.5) and copolymer II (x = 0.74, y = 0.26)] were investigated by both DPMS and Py-GC/MS (except copolymer II) techniques. In the case of copolymer I, the thermal degradation products of SE1, SE2, S-2, and S2E (S = styrene sulfide, E = ethylene sulfide) were detected in DPMS, whereas the formation of SE1 and SE2 were observed by Py-GC/MS technique. However, for copolymer II, SE3 was also found along with SE1, SE2, S-2, and S2E in DPMS. The formation of additional product (SE3) observed in copolymer II could be due to an increase in the block length formed during copolymerization. Further, a comparative study on thermal degradation of PES, poly(ethylene disulfide) (PEDS), and poly(ethylene tetrasulfide) (PETS) were investigated by Py-GC/MS. The pyrolysis products detected by both DPMS and Py-GC/MS indicates that the thermal decomposition of these polymers yield cyclic sulfides through an intramolecular exchange or by backbiting processes. The linear products with thiol and vinyl groups were also observed by Py-GC/MS along with the cyclic products via carbon hydrogen transfer reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electroluminescent zinc sulfide doped with copper and chloride (ZnS:Cu, Cl) powder was heated to 400°C and rapidly quenched to room temperature. Comparison between the quenched and non-quenched phosphors using synchrotron radiation X-ray powder diffraction (XRPD) (λ = 0.828692 Å) and X-ray absorption spectroscopy (XAS) was made. XRPD shows that the expected highly faulted structure is observed with excellent resolution out to 150° 2θ (or to (12 2 2) of the sphalerite phase). The quenched sample compared to the unheated sample shows a large change in peak ratios between 46.7° and 46.9°, which is thought to correspond to the wurtzite (0 0 6), (0 3 2) and sphalerite (3 3 3)/(5 1 1) peaks. Hence, a large proportion of this sphalerite diffraction is lost from the material upon rapid quenching, but not when the material is allowed to cool slowly. The Zn K-edge XAS data indicate that the crystalline structures are indistinguishable using this technique, but do give an indication that the electronic structure has altered due to changing intensity of the white line. It is noted that the blue electroluminescence (EL) emission bands are lost upon quenching: however, a large amount of total EL emission intensity is also removed, which is consistent with our findings. We report the XRPD of a working alternating-current electroluminescence device in the synchrotron X-ray beam, which exhibits a new diffraction pattern when the device is powered in an AC field even though the phosphor is fixed in the binder. Significantly, only a few crystals are required to yield the diffraction data because of the high flux X-ray source. These in panel data show multiple sharp diffraction lines spread out under the region, where capillary data show broad diffraction intensity indicating that the phosphor powder is comprised of unique crystals, each having different structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rotational spectra of C(6)H(5)CCH center dot center dot center dot H(2)S, C(6)H(5)CCH center dot center dot center dot H(2)(34)S, C(6)H(5)CCH center dot center dot center dot HDS, C(6)H(5)CCH center dot center dot center dot D(2)S and C(6) H(5)CCD center dot center dot center dot H(2)S complexes have been observed using a pulsed nozzle Fourier transform microwave spectrometer. The observed spectrum is consistent with a structure in which hydrogen sulfide is located over the phenyl ring pi cloud and the distance between the centers of masses of the two monomers is 3.74 +/- 0.01 angstrom. In the complex, the H(2)S unit is shifted from the phenyl ring center towards the acetylene group. The vibrationally averaged structure has an effective Cs symmetry. Ab initio calculations were performed at MP2/aug-cc-pVDZ level of theory to locate the possible geometries of the complex. The calculations reveal the experimentally observed structure to be more stable than a coplanar arrangement of the monomers, which was observed for the C(6)H(5)CCH center dot center dot center dot H(2)O complex. Atoms in molecule theoretical analysis shows the presence of S-H center dot center dot center dot pi hydrogen bond. For the parent isotopologue, each transition frequency was found to split into two resulting from an interchange of the equivalent hydrogens of H(2)S unit in the complex. (C) 2011 Elsevier Inc. All rights reserved.