985 resultados para PM2. 5
Resumo:
Control Objectives for Information and related Technology (COBIT) has grown to be one of the most significant IT Governance (ITG) frameworks available and also the best suited for audit, as it provides comprehensive guidance around IT processes and related business goals. However, given the constraints of both time and resources within which the Australian public sector is forced to operate, implementing an audit framework the size of COBIT in its entirety is often considered too large a task. As an alternative to full implementation it is not uncommon for the public sector to “cherry pick” controls from the framework in an effort to reduce its size. This paper reports on research undertaken to evaluate the potential to use an optimised sub-set of COBIT 5 for ITG audit in Australian public sector organisations. A survey methodology was employed to determine the control-objectives considered to be the most important to a selection of public sector organisations. Twelve control-objectives were identified as being most important to Queensland public sector organisations. As ten of these were also identified by previous studies, it appears possible to derive an optimised sub-set from COBIT 5 that would be both enduring and relevant across geographical and organisational contexts.
Resumo:
Murine intestinal intraepithelial lymphocytes (IEL) have been shown to contain subsets of alpha/beta TCR+ and gamma/delta TCR+ T cells that spontaneously produce cytokines such as IFN-gamma and IL-5. We have now determined the nature and cell cycle stage of these cytokine-producing T lymphocytes in EIL by using IFN-gamma- and IL-5-specific ELISPOT assay, cytokine-specific mRNA-cDNA dot-blot hybridization and polymerase chain reaction, and flow cytometry (FACS) for DNA analysis. When CD3+ T cells from IEL of normal C3H/HeN mice were separated into low and high density fractions by discontinuous Percoll gradients, IFN-gamma and IL-5 spot-forming cells were only found in the former population. Analysis of mRNA for these cytokines by both IFN-gamma- and IL-5-specific dot-blot hybridization and polymerase chain reaction revealed that higher levels of message for IFN-gamma and IL-5 were also seen in the low density fraction. However, cell cycle analysis of these two fractions by FACS using propidium iodide showed a similar pattern of cell cycle stages in both low and high density populations (G0 + G1 approximately 96 to 98% and S/G2 + M approximately 2 to 4%). Finally, mRNA from gamma/delta TCR+ and alpha/beta TCR+ T cells in both low and high density fractions of IEL were analyzed for IFN-gamma and IL-5 message by polymerase chain reaction. After 35 cycles of amplification, both gamma/delta TCR+ and alpha/beta TCR+ T cells in the low density fraction expressed higher levels of message for these two cytokines when compared with the high density population. These results have now shown that both gamma/delta and alpha/beta TCR+ IEL can be separated into low and high density subsets and both fractions possess a similar stage of cell cycle. However, only the low density cells (in G1 phase) of both gamma/delta and alpha/beta TCR types possess increased cytokine-specific mRNA and produce the cytokines IFN-gamma and IL-5. Our results suggest that alpha/beta TCR+ and gamma/delta TCR+ IEL can produce cytokines without cell proliferation.
Resumo:
In the structure of the title complex, [Cs(C6H2Cl3N2O2)(H2O)]n, the caesium salt of the commercial herbicide picloram, the Cs+ cation lies on a crystallographic mirror plane, which also contains the coordinating water molecule and all non-H atoms of the 4-amino-3,5,6-trichloropicolinate anion except the carboxylate O-atom donors. The irregular CsCl4O5 coordination polyhedron comprises chlorine donors from the ortho-related ring substituents of the picloramate ligand in a bidentate chelate mode, with a third chlorine bridging [Cs-Cl range 3.6052 (11)-3.7151 (11) Å] as well as a bidentate chelate carboxylate group giving sheets extending parallel to (010). A three-dimensional coordination polymer structure is generated through the carboxylate group, which also bridges the sheets down [010]. Within the structure, there are intra-unit water O-HOcarboxylate and amine N-HNpyridine hydrogen-bonding interactions.
Resumo:
Chapter 5: Fertility and infertility. p52-70. This section describes patterns of fertility across Surveys 1 to 4 among the cohort of women who were born in 1973-1978. This section includes the examination of pregnancy outcomes including both live births and pregnancy losses (stillbirths, miscarriages, terminations and ectopic pregnancies). This section also examines the prevalence of self-reported problems with fertility and whether these women sought advice and/or treatment. As women age they are more likely to experience infertility and, with little other data available, the ALSWH provides an important opportunity to examine this problem and the related use of health services. 1. Pregnancy losses are common. Half of the women who report a pregnancy outcome at Survey 4 have experienced a pregnancy loss. 2. More than one third (39%) of women who have experienced a live birth by Survey 4 have also experienced a pregnancy loss. 3. For every ten women aged 28-33 years in 2006: four women had not had been pregnant, five women had a live birth (with or without a recognised pregnancy loss), and one woman had a recognised pregnancy loss only. 4. Among women who had tried to conceive or had been pregnant, one-in-six had experienced infertility. (i.e. tried unsuccessfully to get pregnant for 12 months or more) 5. The most significant factors associated with having infertility, seeking advice and using treatment were: polycystic ovary syndrome, endometriosis and miscarriage. 6. Of the women who reported infertility, two-thirds sought advice but only half used treatment. 7. Most of the women who used fertility treatment had used low cost and non-invasive methods.
Resumo:
The adequacy of the UV Index (UVI), a simple measure of ambient solar ultraviolet (UV) radiation, has been questioned on the basis of recent scientific data on the importance of vitamin D for human health, the mutagenic capacity of radiation in the UVA wavelength, and limitations in the behavioral impact of the UVI as a public awareness tool. A working group convened by ICNIRP and WHO met to assess whether modifications of the UVI were warranted and to discuss ways of improving its effectiveness as a guide to healthy sun-protective behavior. A UV Index greater than 3 was confirmed as indicating ambient UV levels at which harmful sun exposure and sunburns could occur and hence as the threshold for promoting preventive messages. There is currently insufficient evidence about the quantitative relationship of sun exposure, vitamin D, and human health to include vitamin D considerations in sun protection recommendations. The role of UVA in sunlight-induced dermal immunosuppression and DNA damage was acknowledged, but the contribution of UVA to skin carcinogenesis could not be quantified precisely. As ambient UVA and UVB levels mostly vary in parallel in real life situations, any minor modification of the UVI weighting function with respect to UVA-induced skin cancer would not be expected to have a significant impact on the UV Index. Though it has been shown that the UV Index can raise awareness of the risk of UV radiation to some extent, the UVI does not appear to change attitudes to sun protection or behavior in the way it is presently used. Changes in the UVI itself were not warranted based on these findings, but rather research testing health behavior models, including the roles of self-efficacy and self-affirmation in relation to intention to use sun protection among different susceptible groups, should be carried out to develop more successful strategies toward improving sun protection behavior. Health Phys. 103(3):301-306; 2012
Resumo:
The structure of Cu-ZSM-5 catalysts that show activity for direct NO decomposition and selective catalytic reduction of NOx by hydrocarbons has been investigated by a multitude of modern surface analysis and spectroscopy techniques including X-ray photoelectron spectroscopy, thermogravimetric analysis, and in situ Fourier transform infrared spectroscopy. A series of four catalysts were prepared by exchange of Na-ZSM-5 with dilute copper acetate, and the copper loading was controlled by variation of the solution pH. Underexchanged catalysts contained isolated Cu2+OH-(H2O) species and as the copper loading was increased Cu2+ ions incorporated into the zeolite lattice appeared. The sites at which the latter two copper species were located were fundamentally different. The Cu2+OH-(H2O) moieties were bound to two lattice oxygen ions and associated with one aluminum framework species. In contrast, the Cu2+ ions were probably bound to four lattice oxygen ions and associated with two framework aluminum ions. Once the Cu-ZSM-5 samples attained high levels of exchange, the development of [Cu(μ-OH)2Cu]n2+OH-(H2O) species along with a small concentration of Cu(OH)2 was observed. On activation in helium to 500°C the Cu2+OH-(H2O) species transformed into Cu2+O- and Cu+ moieties, whereas the Cu2+ ions were apparently unaffected by this treatment (apart from the loss of ligated water molecules). Calcination of the precursors resulted in the formation of Cu2+O2- and a one-dimensional CuO species. Temperature-programmed desorption studies revealed that oxygen was removed from the latter two species at 407 and 575°C, respectively. © 1999 Academic Press.
Resumo:
The current gold standard for the design of orthopaedic implants is 3D models of long bones obtained using computed tomography (CT). However, high-resolution CT imaging involves high radiation exposure, which limits its use in healthy human volunteers. Magnetic resonance imaging (MRI) is an attractive alternative for the scanning of healthy human volunteers for research purposes. Current limitations of MRI include difficulties of tissue segmentation within joints and long scanning times. In this work, we explore the possibility of overcoming these limitations through the use of MRI scanners operating at a higher field strength. We quantitatively compare the quality of anatomical MR images of long bones obtained at 1.5 T and 3 T and optimise the scanning protocol of 3 T MRI. FLASH images of the right leg of five human volunteers acquired at 1.5 T and 3 T were compared in terms of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The comparison showed a relatively high CNR and SNR at 3 T for most regions of the femur and tibia, with the exception of the distal diaphyseal region of the femur and the mid diaphyseal region of the tibia. This was accompanied by an ~65% increase in the longitudinal spin relaxation time (T1) of the muscle at 3 T compared to 1.5 T. The results suggest that MRI at 3 T may be able to enhance the segmentability and potentially improve the accuracy of 3D anatomical models of long bones, compared to 1.5 T. We discuss how the total imaging times at 3 T can be kept short while maximising the CNR and SNR of the images obtained.
Resumo:
Jeremejevite is a borate mineral of aluminium and is of variable colour, making the mineral and important inexpensive jewel. The mineral contains variable amounts of F and OH, depending on origin. A comparison of the vibrational spectroscopic data is made with the published data of borate minerals. Raman spectra were averaged over a range of crystal orientations. Two intense Raman bands observed at 961 and 1067 cm−1 are assigned to the symmetric stretching and antisymmetric stretching modes of trigonal boron. Infrared spectrum, bands observed at 1229, 1304, 1350, 1388 and 1448 cm−1 are attributed to BOH in-plane bending modes. Intense Raman band found at 372 cm−1 with other bands of significant intensity at 327 and 417 cm−1 is assigned to trigonal borate bending modes. A quite intense Raman band is found at 3673 cm−1 with other sharp Raman bands found at 3521, 3625 and 3703 cm−1 are assigned to the stretching modes of OH. Raman and infrared spectroscopy has been used to assess the molecular structure of the mineral jeremejevite. Such research is important in the study of borate based nanomaterials.
Resumo:
The presence of arsenic in the environment is a hazard. The accumulation of arsenate by a range of cations in the formation of minerals provides a mechanism for the remediation of arsenate contamination. The formation of the crandallite group of minerals provides a mechanism for arsenate accumulation. Among the crandallite minerals are philipsbornite, arsenocrandallite and arsenogoyazite. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of philipsbornite to be studied. The Raman spectrum of philipsbornite displays an intense band at around 840 cm−1 attributed to the overlap of the symmetric and antisymmetric stretching modes. Raman bands observed at 325, 336, 347, 357, 376 and 399 cm−1 are assigned to the ν2 (AsO4)3− symmetric bending vibration (E) and to the ν4 bending vibration (F2). The observation of multiple bending modes supports the concept of a reduction in symmetry of the arsenate anion in philipsbornite. Evidence for phosphate in the mineral is provided. By using an empirical formula, hydrogen bond distances for the OH units in philipsbornite of 2.8648 Å, 2.7864 Å, 2.6896 Å cm−1 and 2.6220 were calculated.
Resumo:
In the structure of the title compound, [Mg(C7H3N2O6)2(H2O)4] . 4H2O), the slightly distorted octahedral MgO6 coordination polyhedron comprises two trans-related carboxyl O-atom donors from mononodentate 3,5-dinitrobenzoate ligands, and four water molecules. The coordinated water molecules and the four water molecules of solvation give both intra- and inter-unit O-H...O hydrogen-bonding interactions with carboxyl, water and nitro O-atom acceptors, giving a three-dimensional structure.
Resumo:
This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.
Resumo:
We have analyzed a frondelite mineral sample from the Cigana mine, located in the municipality of Conselheiro Pena, a well-known pegmatite in Brazil. In the Cigana pegmatite, secondary phosphates, namely eosphorite, fairfieldite, fluorapatite, frondelite, gormanite, hureaulite, lithiophilite, reddingite and vivianite are common minerals in miarolitic cavities and in massive blocks after triphylite. The chemical formula was determined as (Mn0.68, Fe0.32)(Fe3+)3,72(PO4)3.17(OH)4.99. The structure of the mineral was assessed using vibrational spectroscopy. Bands attributed to the stretching and bending modes of PO4 3- and HOPO3 3- units were identified. The observation of multiple bands supports the concept of symmetry reduction of the phosphate anion in the frondelite structure. Sharp Raman and infrared bands at 3581 cm−1 is assigned to the OH stretching vibration. Broad Raman bands at 3063, 3529 and 3365 cm−1 are attributed to water stretching vibrational modes.