793 resultados para PESO AL NACER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selected chrysocolla mineral samples from different origins have been studied by using PXRD, SEM, EDX and XPS. The XRD patterns show that the chrysocolla mineral samples are non-diffracting and no other phases are present in the minerals, thus showing the chrysocolla samples are pure. SEM analyses show the chrysocolla surfaces are featureless. EDX analyses enable the formulae of the chrysocolla samples to be calculated. The thermal decomposition of the mineral chrysocolla has been studied using a combination of thermogravimetric analysis and derivative thermogravimetric analysis. Five thermal decomposition mass loss steps are observed for the chrysocolla from Arizona (a) at 125 ◦C with the loss of water, (b) at 340 ◦C with the loss of hydroxyl units, (c) at 468.5 ◦C with a further loss of hydroxyls, (d) at 821 ◦C with oxygen loss and (e) at 895 ◦C with a further loss of oxygen. The thermal analysis of the chrysocolla from Congo shows mass losses at 125, 275.3, 805.6 and 877.4 ◦C and for the Nevada chrysocolla, mass loss steps at 268, 333, 463, 786.0 and 817.7 ◦C are observed. The thermal analysis of spertiniite is very different from that of chrysocolla and thermally decomposes at around 160 ◦C. XPS shows that there are two different copper species present, one which is bonded to oxygen and one to a hydroxyl unit. The O 1s is broad and very symmetrical suggesting two O species of equal number. The bond energy of 102.9 eV for the Si 2p suggests that it is in the form of a silicate. The bond energy is much higher for silicas around ∼103.5 eV. The reported value for silica gel has Si 2p at 103.4 eV. The combination of TG, PXRD, EDX and XPS adds to our fundamental knowledge of the structure of chrysocolla.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Goethite and Al-substituted goethite were synthesized from the reaction between ferric nitrate and/or aluminum nitrate and potassium hydroxide. XRF, XRD, TEM with EDS were used to characterize the chemical composition, phase and lattice parameters, and morphology of the synthesized products. The results show that d(020) decreases from 4.953 to 4.949 Å and the b dimension decreases from 9.951 Å to 9.906 Å when the aging time increases from 6 days to 42 days for 9.09 mol% Al-substituted goethite. A sample with 9.09 mol% Al substitution in Al-substituted goethite was prepared by a rapid co-precipitation method. In the sample, 13.45 mol%, 12.31 mol% and 5.85 mol% Al substitution with a crystal size of 163, 131, and 45 nm are observed as shown in the TEM images and EDS. The crystal size of goethite is positively related to the degree of Al substitution according to the TEM images and EDS results. Thus, this methodology is proved to be effective to distinguish the morphology of goethite and Al substituted goethite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zanazziite is the magnesium member of a complex beryllium calcium phosphate mineral group named roscherite. The studied samples were collected from the Ponte do Piauí mine, located in Itinga, Minas Gerais. The mineral was studied by electron microprobe, Raman and infrared spectroscopy. The chemical formula can be expressed as Ca2.00(Mg3.15,Fe0.78,Mn0.16,Zn0.01,Al0.26,Ca0.14)Be4.00(PO4)6.09(OH)4.00⋅5.69(H2O) and shows an intermediate member of the zanazziite–greinfeinstenite series, with predominance of zanazziite member. The molecular structure of the mineral zanazziite has been determined using a combination of Raman and infrared spectroscopy. A very intense Raman band at 970 cm−1 is assigned to the phosphate symmetric stretching mode whilst the Raman bands at 1007, 1047, 1064 and 1096 cm−1 are attributed to the phosphate antisymmetric stretching mode. The infrared spectrum is broad and the antisymmetric stretching bands are prominent. Raman bands at 559, 568, 589 cm−1 are assigned to the ν4 out of plane bending modes of the PO4 and HPO4 units. The observation of multiple bands supports the concept that the symmetry of the phosphate unit in the zanazziite structure is reduced in symmetry. Raman bands at 3437 and 3447 cm−1 are attributed to the OH stretching vibrations; Raman bands at 3098 and 3256 are attributed to water stretching vibrations. The width and complexity of the infrared spectral profile in contrast to the well resolved Raman spectra, proves that the pegmatitic phosphates are better studied with Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chrysocolla (Cu, Al)2H2Si2O5(OH)4·nH2O is a hydrated copper hydroxy silicate and is commonly known as a semi-precious jewel. The mineral has an ill defined structure but is said to be orthorhombic, although this remains unproven. Thus, one of the few methods of studying the molecular structure of chrysocolla is to use vibrational spectroscopy. Chrysocolla may be defined as a colloidal mineral. The question arises as to whether chrysocolla is a colloidal system of spertiniite and amorphous silica. The main question addressed by this study is whether chrysocolla is (1) a mesoscopic assemblage of spertiniite, Cu(OH)2, silica, and water, (2) represents a colloidal gel or (3) is composed of microcrystals with a distinct structure. Considerable variation in the vibrational spectra is observed between chrysocolla samples. The Raman spectrum of chrysocolla is characterised by an intense band at 3624 cm−1 assigned to the OH stretching vibrations. Intense Raman bands found at 674, 931 and 1058 cm−1 are assigned to SiO3 vibrations. The Raman spectrum of spertiniite does not correspond to the spectrum of chrysocolla and it is concluded that the two minerals are not related. The spectra of chrysocolla correspond to a copper silicate colloidal gel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sedimentary palygorskite (SP) and hydrothermal palygorskite (HP) were characterized by XRF, TG/DSC, andXRD. The total iron and dissociative iron in palygorskite were detected using spectrophotometry. The results showed that about 3.57 wt% of Fe2O3 was detected in SP in contrast with 0.4 wt% in HP. SP was a Fe-substituted palygorskite, and HP was an Al-rich palygorskite. The occurrence of Fe substitution in SP resulted in two mass loss steps of coordinated water and resulted in a larger d spacing. The SP showed greater thermal stability than the HP. It was proposed the change of (200) diffraction peak and (240) diffraction peak reflect changes of tetrahedral and octahedral structures in palygorskite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1971, Rempt et al. reported peripheral refraction patterns (skiagrams) along the horizontal visual field in 442 people. Later in the same year, Hoogerheide et al. used skiagrams in combination with medical records to relate skiagrams in emmetropes and hyperopes to progression of myopia in young adults. The two articles have spurred interest in peripheral refraction in the past decade. We challenge the understanding that their articles provide evidence that the peripheral refraction pattern along the horizontal visual field is predictive of whether or not a person develops myopia. First, although it has been generally assumed that the skiagrams were measured before the changes in refraction were monitored, Hoogerheide et al. did not state that this was the case. Second, if the skiagrams were obtained at an initial examination and given the likely rates of recruitment and successful completion of training, the study must have taken place during a period of 10 to 15 years; it is much more likely that Hoogerheide et al. measured the skiagrams in a shorter period. Third, despite there being many more emmetropes and hyperopes in the Rempt et al. article than there are in the Hoogerheide et al. article, the number of people in two types of “at risk” skiagrams is greater in the latter; this is consistent with the central refraction status being reported from an earlier time by Hoogerheide et al. than by Rempt et al. In summary, we believe that the skiagrams reported by Hoogerheide et al. were taken at a later examination, after myopia did or did not occur, and that the refraction data from the initial examination were retrieved from the medical archives. Thus, this work does not provide evidence that peripheral refraction pattern is indicative of the likely development of myopia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the �4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the �2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pegmatite mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3 has been studied by a combination of SEM and EMP, Raman and infrared spectroscopy. The studied sample was collected from the Santa Ana pegmatite, Argentina. The mineral occurs as a primary mineral in lithium bearing pegmatite, in association with beausite and lithiophilite. The Raman spectrum is characterized by a very sharp intense Raman band at 980 cm�1 assigned to the PO3�4 symmetric stretching mode. Multiple Raman bands are observed in the PO3�4 antisymmetric stretching region, providing evidence for the existence of more than one phosphate unit in the structure of qingheiite and evidence for the reduction in symmetry of the phosphate units. This concept is affirmed by the number of bands in the m4 and m2 bending regions. No intensity was observed in the OH stretching region in the Raman spectrum but significant intensity is found in the infrared spectrum. Infrared bands are observed at 2917, 3195, 3414 and 3498 cm�1 are assigned to water stretching vibrations. It is suggested that some water is coordinating the metal cations in the structure of qingheiite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral kulanite BaFe2Al2(PO4)3(OH)3, a barium iron aluminum phosphate, has been studied by using a combination of electron microscopy and vibrational spectroscopy. Scanning electron microscopy with EDX shows the mineral is homogenous with no other phases present. The Raman spectrum is dominated by an intense band at 1022 cm−1 assigned to the PO43-ν1 symmetric stretching mode. Low intensity Raman bands at 1076, 1110, 1146, 1182 cm−1 are attributed to the PO43-ν3 antisymmetric stretching vibrations. The infrared spectrum shows a complex spectral profile with overlapping bands. Multiple phosphate bending vibrations supports the concept of a reduction in symmetry of the phosphate anion. Raman spectrum at 3211, 3513 and 3533 cm−1 are assigned to the stretching vibrations of the OH units. Vibrational spectroscopy enables aspects on the molecular structure of kulanite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent work [S. Chaudhuri, J.T. Muckerman, J. Phys. Chem. B 109 (2005) 6952] reported that two Ti-substituted atoms on an Al(0 0 1) surface can form a catalytically active site for the dissociation of H2, but the diffusion barrier of atomic H away from Ti site is as high as 1.57 eV. By using ab initio density functional calculations, we found that two hydrogen molecules can dissociate on isolated-Ti atom doped Al(0 0 1) surface with small activation barriers (0.21 and 0.235 eV for first and second H2, respectively). Additionally, the diffusion barrier of atomic H away from Ti site is also moderate (0.47 eV). These results contribute further towards understanding the improved kinetics observed in recycling of hydrogen with Ti-doped NaAlH4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibrational spectroscopy has been used to characterize the sulphate mineral khademite Al(SO4)F∙5(H2O). Raman band at 991 cm-1 with a shoulder at 975 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode. The observation of two symmetric stretching modes suggests that the sulphate units are not equivalent. Two low intensity Raman bands at 1104 and 1132 cm-1 are assigned to the ν3 (SO4)2- antisymmetric stretching mode. The broad Raman band at 618 cm-1 is assigned to the v4 (SO4)2- bending modes. Raman bands at 455, 505 and 534 cm-1 are attributable to the doubly degenerate v2 (SO4)2- bending modes. Raman bands at 2991, 3146 and 3380 cm-1 are assigned to the OH stretching bands of water. Five infrared bands are noted at 2458, 2896, 3203, 3348 and 3489 cm-1 are also due to water stretching bands. The observation of multiple water stretching vibrations gives credence to the non-equivalence of water units in the khademite structure. Vibrational spectroscopy enables an assessment of the structure of khademite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent manuscript published by Egodawatta et al. (2013), the authors investigated the build-up process of heavy metals (HMs) associated with road-deposited sediment (RDS) on residential road surfaces, and presented empirical models for the prediction of both the surface loads and build-up rates of HMs on these surfaces...