976 resultados para PARALLEL MAGNETIC-FIELD


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Rietveld profile‐analysis method is used to investigate the x‐ray diffraction pattern of lithiated Fe3O4. It is shown that, after exposure to air, pure magnetite coexists with a lithium‐inserted LixFe3O4 phase. The Mössbauer spectra at 300 and 4.2 K have been used to estimate the lithium content of the sample, the pure magnetite concentration, and the iron distribution over the available 16c and 16d sites of the spinel structure. Magnetization measurements from 4.2 to 120 K with an external magnetic field up to 150 kOe have been used to obtain the saturation magnetic moment, the magnetic anisotropy constants, and the susceptibility. It is concluded that a noncollinear spin structure should be present in Li0.5Fe3O4. These results indicate that there is no room‐temperature extrusion of iron even for x→2.0, but that on exposure to air LixFe3O4 samples with x>0.5 are oxidized at room temperature by delithiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a theoretical study of the recently observed dynamical regimes of paramagnetic colloidal particles externally driven above a regular lattice of magnetic bubbles [P. Tierno, T. H. Johansen, and T. M. Fischer, Phys. Rev. Lett. 99, 038303 (2007)]. An external precessing magnetic field alters the potential generated by the surface of the film in such a way to either drive the particle circularly around one bubble, ballistically through the array, or in triangular orbits on the interstitial regions between the bubbles. In the ballistic regime, we observe different trajectories performed by the particles phase locked with the external driving. Superdiffusive motion, which was experimentally found bridging the localized and delocalized dynamics, emerge only by introducing a certain degree of randomness into the bubbles size distribution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To perform in vivo imaging of the cerebellum with an in-plane resolution of 120 mm to observe its cortical granular and molecular layers by taking advantage of the high signal-to-noise ratio and the increased magnetic susceptibility-related contrast available at high magnetic field strength such as 7 T. Materials and Methods: The study was approved by the institutional review board, and all patients provided written consent. Three healthy persons (two men, one woman; mean age, 30 years; age range, 28-31 years) underwent MR imaging with a 7-T system. Gradient-echo images (repetition time msec/echo time msec, 1000/25) of the human cerebellum were acquired with a nominal in-plane resolution of approximately 120 mum and a section thickness of 1 mm. Results: Structures with dimensions as small as 240 mum, such as the granular and molecular layers in the cerebellar cortex, were detected in vivo. The detection of these structures was confirmed by comparing the contrast obtained on T2*-weighted and phase images with that obtained on images of rat cerebellum acquired at 14 T with 30 mum in-plane resolution. Conclusion: In vivo cerebellar imaging at near-microscopic resolution is feasible at 7 T. Such detailed observation of an anatomic area that can be affected by a number of neurologic and psychiatric diseases, such as stroke, tumors, autism, and schizophrenia, could potentially provide newer markers for diagnosis and follow-up in patients with such pathologic conditions. (c) RSNA, 2010.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drug-nanoparticle conjugates: The anticancer drug camptothecin (CPT) was covalently linked at the surface of ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) via a linker, allowing drug release by cellular esterases. Nanoparticles were hierarchically built to achieve magnetically-enhanced drug delivery to human cancer cells and antiproliferative activity.The linking of therapeutic drugs to ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) allowing intracellular release of the active drug via cell-specific mechanisms would achieve tumor-selective magnetically-enhanced drug delivery. To validate this concept, we covalently attached the anticancer drug camptothecin (CPT) to biocompatible USPIOs (iron oxide core, 9-10 nm; hydrodynamic diameter, 52 nm) coated with polyvinylalcohol/polyvinylamine (PVA/aminoPVA). A bifunctional, end-differentiated dicarboxylic acid linker allowed the attachment of CPT to the aminoPVA as a biologically labile ester substrate for cellular esterases at one end, and as an amide at the other end. These CPT-USPIO conjugates exhibited antiproliferative activity in vitro against human melanoma cells. The intracellular localization of CPT-USPIOs was confirmed by transmission electron microscopy (iron oxide core), suggesting localization in lipid vesicles, and by fluorescence microscopy (CPT). An external static magnetic field applied during exposure increased melanoma cell uptake of the CPT-USPIOs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this master's thesis a mechanical model that is driven with variable speed synchronous machine was developed. The developed mechanical model simulates the mechanics of power transmission and its torsional vibrations. The mechanical model was developed for the need of the branched mechanics of a rolling mill and the propulsion system of a tanker. First, the scope of the thesis was to clarify the concepts connected to the mechanical model. The clarified concepts are the variable speed drive, the mechanics of power transmission and the vibrationsin the power transmission. Next, the mechanical model with straight shaft line and twelve moments of inertia that existed in the beginning was developed to be branched considering the case of parallel machines and the case of parallel rolls. Additionally, the model was expanded for the need of moreaccurate simulation to up to thirty moments of inertia. The model was also enhanced to enable three phase short circuit situation of the simulated machine. After that the mechanical model was validated by comparing the results of the developed simulation tool to results of other simulation tools. The compared results are the natural frequencies and mode shapes of torsional vibration, the response of the load torque step and the stress in the mechanical system occurred by the permutation of the magnetic field that is arisen from the three phase short circuit situation. The comparisons were accomplished well and the mechanical model was validated for the compared cases. Further development to be made is to develop the load torque to be time-dependent and to install two frequency converters and two FEM modeled machines to be simulated parallel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Magnetic field dependencies of Hall coefficient and magnetoresistivity are investigated in classical and quantizing magnetic fields in p-Bi2Te3 crystals heavily doped with Sn grown by Czochralsky method. Magnetic field was parallel to the trigonal axis C3. Shubnikov-de Haas effect and quantum oscillations of the Hall coefficient were measured at temperatures 4.2 K and 11 K. On the basis of the magnetic field dependence of the Hall coefficient a method of estimation of the Hall factor and Hall mobility using the Drabble- Wolf six ellipsoid model is proposed. Shubnikov-de Haas effect and quantum oscillations of the Hall coefficient were observed at 4.2 K and 11 K. New evidence for the existence of the narrow band of Sn impurity states was shown. This band is partly filled by electrons and it is overlapping with the valence states of the light holes. Parameters of the impurity states, their energy ESn - 15 meV, band broadening ¿<< k0T and localization radius of the impuritystate R - 30 Å were obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, the magnetic field control of convection instabilities and heat and mass transfer processesin magnetic fluids have been investigated by numerical simulations and theoretical considerations. Simulation models based on finite element and finite volume methods have been developed. In addition to standard conservation equations, themagnetic field inside the simulation domain is calculated from Maxwell equations and the necessary terms to take into account for the magnetic body force and magnetic dissipation have been added to the equations governing the fluid motion.Numerical simulations of magnetic fluid convection near the threshold supportedexperimental observations qualitatively. Near the onset of convection the competitive action of thermal and concentration density gradients leads to mostly spatiotemporally chaotic convection with oscillatory and travelling wave regimes, previously observed in binary mixtures and nematic liquid crystals. In many applications of magnetic fluids, the heat and mass transfer processes including the effects of external magnetic fields are of great importance. In addition to magnetic fluids, the concepts and the simulation models used in this study may be applied also to the studies of convective instabilities in ordinary fluids as well as in other binary mixtures and complex fluids.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show that the coercive field in ferritin and ferrihydrite depends on the maximum magnetic field in a hysteresis loop and that coercivity and loop shifts depend both on the maximum and cooling fields. In the case of ferritin, we show that the time dependence of the magnetization also depends on the maximum and previous cooling fields. This behavior is associated to changes in the intraparticle energy barriers imprinted by these fields. Accordingly, the dependence of the coercive and loop-shift fields with the maximum field in ferritin and ferrihydrite can be described within the frame of a uniform-rotation model considering a dependence of the energy barrier with the maximum and the cooling fields.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work AC magnetometer was developed and primary test measurements were performed for temperature range from 77 K up to 350 K in frequency range from 1 kHz up to 20 kHz. In the course of the present work dependencies of magnetization on temperature for Lao7Sr03Mni _yFeyO3 with y = 0.15, 0.20, 0.25 were obtained in DC magnetic field using SQUID magnetometer and in AC magnetic field using the developed AC magnetometer. Lai.XSrXMnO3 (LSMO) compounds belong to the class of Mn perovskites, which demonstrate very high degree of spin polarization. These materials are of great importance for nowadays applications in spintronics, where spin polarized electron transport is used. Spin glass like behavior was found as a characteristic feature of these solid solutions with the freezing temperature in the range 65 — 210 K.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work magnetic properties of ZnGeP2:Mn were investigated in DC magnetic field with SQUID magnetometer in the temperature range from 3 K up to 400 K and in AC magnetic field with AC magnetometer in the temperature range from 77 K up to 350 K in frequency range from 500 Hz up to 18 KHz. Three ZnGeP2:Mn samples were studied with Mn concentration c = 1.5 % mass, 3 % mass and 3.5 % mass.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work structural, magnetic and transport properties of InGaAs quantum wells (QW) prepared by MBE with an remote Mn layer are investigated. By means of high-resolution X-ray diffractometry the structure of the samples is analyzed. It is shown that Mn ions penetrate into the QW. Influence of the thickness of GaAs spacer and annealing at 286 ºС on the properties of the system is shown. It is shown that annealing of the samples led to Mn activation and narrowing of the Mn layer. Substantial role of 2D holes in ferromagnetic ordering in Mn layer is shown. Evidence for that is observation of maximum at 25 – 55 K on the resistivity temperature dependence. Position of maximum, which is used for quantitative assessment of the Curie temperature, correlates with calculations of the Curie temperature for structures with indirect interaction via 2D holes’ channel. Dependence of the Curie temperature on the spacer thickness shows, that creation of applicable spintronic devices needs high-precision equipment to manufacture extra fine structures. The magnetotransport measurements show that charge carrier mobility is very low. This leads to deficiency of the anomalous Hall effect. At the same time, magnetic field dependences of the magnetization at different temperatures demonstrate that systems are ferromagnetically ordered. These facts, most probably, give evidence of presence of the ferromagnetic MnAs clusters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Very fast magnetic avalanches in (La, Pr)-based manganites are the signature of a phase transition from an insulating blocked charge-ordered antiferromagnetic state to a charge-delocalized ferromagnetic (CD-FM) state. We report here the experimental observation that this transition does not occur either simultaneously or randomly in the whole sample but there is instead a spatial propagation with a velocity of the order of tens of m/s. Our results show that avalanches originate from the inside of the sample, move to the outside, and occur at values of the applied magnetic field that depend on the CD-FM fraction in the sample. Moreover, upon application of surface acoustic waves at constant magnetic fields, we are able to trigger avalanches at very well-determined values of the temperature and magnetic field. Due to the interaction with the acoustic waves, the number of isolated ferromagnetic clusters in La0.225Pr0.40Ca0.375MnO3 starts to grow across the entire sample in the same way as if it were a magnetic deflagration.