999 resultados para Oxygen-isotope Record
Resumo:
Variations in the 18O/16O ratios of marine fossils and microfossils record changes in seawater 18O/16O and temperature and form the basis for global correlation. Relying on previous compilations and new data, this chapter presents oxygen isotope curves for Phanerozoic foraminifera, mollusks, brachiopods, and conodonts, and for Precambrian limestones, dolostones, and cherts. Periodic oxygen-isotopic variations in deep-sea foraminifera define marine isotope stages that, when combined with biostratigraphy and astronomical tuning, provide a late Cenozoic chronostratigraphy with a resolution of several thousand years. Oxygen isotope events of early Cenozoic, Mesozoic, and Paleozoic age serve as chemostratigraphic markers for regional and global correlation. Precambrian oxygen isotope stratigraphy, however, is hampered by the lack of unaltered authigenic marine sediments.
Resumo:
A thick, apparently continuous section recording events of the latest Paleocene thermal maximum in a neritic setting was drilled at Bass River State Forest, New Jersey as part of ODP Leg 174AX [Miller, Sugarman, Browning et al., 1998]. Integrated nannofossil and magneto-stratigraphy provides a firm chronology supplemented by planktonic foraminiferal biostratigraphy. This chronologic study indicates that this neritic section rivals the best deep-sea sections in providing a complete record of late Paleocene climatic events. Carbon and oxygen isotopes measured on benthic foraminifera show a major (4.0% in carbon, 2.3% in oxygen) negative shift correlative with the global latest Paleocene carbon isotope excursion (CIE). A sharp increase in kaolinite content coincides with the isotope shift in the Bass River section, analogous to increases found in several other records. Carbon and oxygen isotopes remain low and kaolinite content remains high for the remainder of the depositional sequence above the CIE (32.5 ft, 9.9 m), which we estimate to represent 300-500 k.y. We interpret these data as indicative of an abrupt shift to a warmer and wetter climate along the North American mid-Atlantic coast, in concert with global events associated with the CIE.
Resumo:
Planktonic foraminiferal oxygen and carbon isotope analyses from Tyrrhenian Sea Ocean Drilling Program (ODP) Site 653 provide a continuous record of the Pliocene-Pleistocene paleoceanographic history of the Mediterranean. Long-term trends in oxygen isotopes primarily reflect changes in global climatic conditions, with a more local or regional signal superimposed on this record. For example, significant enrichments in 18O due to decreases in surface water temperature and/or increases in continental ice volume occurred at 3.1, 2.7, 2.1, 1.6, and 0.4 Ma. In contrast to most open-ocean results, the early Pliocene 6lsO record of Site 653 exhibits high-amplitude fluctuations indicative of very unstable climatic conditions in this region. Another unique aspect of this Mediterranean d18Orecord is the pronounced cooling at the Pliocene/Pleistocene boundary. The carbon isotope record for Site 653 also exhibits high-amplitude variability throughout the Pliocene-Pleistocene. This variability most probably reflects changes in the carbon isotopic composition of the source of Mediterranean surface waters.
Resumo:
Stable isotope records were generated for a late Pliocene-early Pleistocene interval from Ocean Drilling Program (ODP) Site 1123 in the southwest Pacific (41°47 S, 171°30 W; 3290 m water depth). Based on these data, new revisions were made to the shipboard splice and composite section. The isotope records will be used to evaluate the influence of North Atlantic and Southern Ocean deepwater masses on water entering the Pacific in the Deep Western Boundary Current. Three holes were cored at Site 1123, yielding a complete composite section over approximately the last 4.7 m.y. A representative spliced record ("the splice") was developed aboard ship based on magnetic susceptibility, gamma ray attenuation bulk density, and percent reflectance data from the three adjacent holes (Carter, McCave, Richter, Carter, et al., 1999, doi:10.2973/odp.proc.ir.181.2000). No gaps in the sedimentary record were detected for the multiple-cored section of Site 1123. In addition to the isotope data, postcruise revisions to the splice and composite section based on stable isotope data are described here.
Resumo:
Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 °C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.
Resumo:
Core Vema 28-238 preserves an excellent oxygen isotope and magnetic stratigraphy and is shown to contain undisturbed sediments deposited continuously through the past 870,000 yr. Detailed correlation with sequences described by Emiliani in the Caribbean and Atlantic Ocean is demonstrated. The boundaries of 22 stages representing alternating times of high and low Northern Hemisphere ice volume are recognized and dated. The record is interpreted in terms of Northern Hemisphere ice accumulation, and is used to estimate the range of temperature variation in the Caribbean.
Resumo:
The Miocene Climatic Optimum (MCO; ~16.9 to 14.7 Ma) provides an outstanding opportunity to investigate climate-carbon cycle dynamics during a geologically recent interval of global warmth. We present benthic stable oxygen (d18O) and carbon (d13C) isotope records (5-12 kyr time resolution) spanning the late early to middle Miocene interval (18 to 13 Ma) at Integrated Ocean Drilling Program (IODP) Site U1335 (eastern equatorial Pacific Ocean). The U1335 stable isotope series track the onset and development of the MCO as well as the transitional climatic phase culminating with global cooling and expansion of the East Antarctic ice-sheet at ~13.8 Ma. We integrate these new data with published stable isotope, geomagnetic polarity and X-ray fluorescence (XRF) scanner-derived carbonate records from IODP Sites U1335, U1336, U1337 and U1338 on a consistent, astronomically-tuned timescale. Benthic isotope and XRF scanner-derived CaCO3 records depict prominent 100 kyr variability with 400 kyr cyclicity additionally imprinted on d13C and CaCO3 records, pointing to a tight coupling between the marine carbon cycle and climate variations. Our inter-site comparison further indicates that the lysocline behaved in highly dynamic manner throughout the MCO, with >75% carbonate loss occurring at paleo-depths ranging from ~3.4 to ~4 km in the eastern equatorial Pacific Ocean. Carbonate dissolution maxima coincide with warm phases (d18O minima) and d13C decreases, implying that climate-carbon cycle feedbacks fundamentally differed from the late Pleistocene glacial-interglacial pattern, where dissolution maxima correspond to d13C maxima and d18O minima. Carbonate dissolution cycles during the MCO were, thus, more similar to Paleogene hyperthermal patterns.
Resumo:
Stable carbon and oxygen isotopes (d13C and d18O) of foraminiferal tests are amongst the most important tools in paleoceanography but the extent to which recrystallization can alter the isotopic composition of the tests is not well known. Here, we compare three middle Miocene (16-13 Ma) benthic foraminiferal stable isotope records from eastern equatorial Pacific sites with different diagenetic histories to investigate the effect of recrystallization. To test an extreme case, we analyzed stable isotope compositions of benthic foraminifera from Integrated Ocean Drilling Program Site U1336, for which the geochemistry of bulk carbonates and associated pore waters indicate continued diagenetic alteration in sediments > 14.7 Ma. Despite this diagenetic overprinting, the amplitudes and absolute values of the analyzed U1336 stable isotopes agree well with high resolution records from better preserved Sites U1337 and U1338 nearby. Our results suggest that although benthic foraminiferal tests of all three sites show some degree of textural changes due to recrystallization, they have retained their original stable isotope signatures. The good agreement of the benthic foraminiferal stable isotope records demonstrates that recrystallization occurred extremely rapidly (<100 kyr) after deposition. This is confirmed by the preservation of orbital cyclicities in U1336 stable isotope data and d18O values being different to inorganic calcite that would precipitate from U1336 pore waters during late recrystallization. The close similarity of the benthic foraminiferal stable isotope records between the sites allows the well resolved paleo-magnetic results of Site U1336 to be transferred to Sites U1337 and U1338 improving the global Geological Timescale.
Resumo:
Carbon isotopic records of nutrient-depleted surface water place constraints on the past fertility of the oceans and on past atmospheric pCO2 levels. The best records of nutrient-depleted delta13C are obtained from planktonic foraminifera living in the thick mixed layers of the western equatorial and tropical Atlantic Ocean. We have produced a composite, stacked Globigerinoides sacculifer delta13C record from the equatorial Atlantic, which exhibits significant spectral power at the 100,000- and 41,000-year Milankovitch periods, but no power at the 23,000-year period. Similar to the record presented by Shackleton and Pisias [1985], surface-deep ocean Delta delta13C produced with the G. sacculifer record leads the delta18O ice volume record. However, the glacial-interglacial amplitudes of Delta delta13C differ between our record and Shackleton and Pisias [1985] record. Although large changes in Delta delta13C occur in the equatorial Atlantic during early stages of the last three glacial cycles, surface-deep Delta delta13C at glacial maxima (18O stage 2, late stage 6, and late stage 8) was only about 0.2? greater than during the subsequent interglacial. Our results imply that nutrient-driven pCO2 changes account for about one third of the pCO2 decrease observed in ice cores, and consequently, Delta delta13C should not be used as a proxy pCO2 index. Enough variance in the ice core pCO2 records remains to be explained that conclusions about pCO2 and ice volume phase relationships should also be reexamined. As much as 40 ppm pCO2 change still has not been accounted for by models of past physics and chemistry of the ocean.
Resumo:
Sediment cores from the southern continental margin of Australia are near the formation region of Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water and record the changes in these water masses from the last glacial maximum through the present. Carbon and oxygen isotopes were measured on the benthic foraminiferal species Planulina wuellerstrorfi for both the Recent and last glacial maximum sections of the cores and were then used to reconstruct temperature and carbon isotopic water column profiles. The glacial oxygen isotope profile indicates a vertical temperature structure for this region similar to that in today's Subantarctic Zone. Although intermediate water delta13C cannot be used as a nutrient tracer in this region because of the large influence of air-sea carbon isotopic exchange on this water mass, delta13C can be used as a water mass tracer. Today, AAIW properties reflect contributions from cool, fresh Antarctic Surface Waters (2/3) and warm, salty waters from the Indian Ocean (1/3). When examined in conjuction with the glacial delta13C and delta18C data from the north Indian and Southern Oceans, our data suggest a much reduced contribution of North Indian Ocean intermediate water to glacial Antarctic Intermediate Water relative to the contribution of Antarctic Surface Water. This fresher, cooler glacial Antarctic Intermediate Water would be distributed to the intermediate-depth ocean, thus decreasing the transport of salt produced in the North Indian Ocean to the rest of the world's oceans. Combined with evidence for a reduced influence of North Atlantic Deep Water, these results suggest major changes in the pathways for the redistribution of heat and salt in the glacial ocean.
Resumo:
We present a species-specific Mg/Ca-calcification temperature calibration for Globorotalia inflata from a suite of 38 core top samples from the South Atlantic (from 8° to 49°S). G. inflata is a deep-dwelling planktonic foraminifer commonly occurring in subtropical to subpolar conditions, which qualifies it for reconstructions of the permanent thermocline. Apparent calcification depths and calcification temperatures were determined by comparing measured d18O with equilibrium d18O of calcite based on water column properties. Based on our core top samples, G. inflata apparent calcification depth is constant throughout the South Atlantic mid-latitudes with a depth of 350-400 m within the permanent thermocline. The resulting Mg/Ca-calcification temperature calibration is Mg/Ca = 0.72 +/-0.045/0.042 exp (0.076 +0.006 calcification 2 temperature) (r2 = 0.81) and covers the temperature range 3.1-16.5°C. We applied our Mg/Ca calibration to gravity core PS2495-3 from the Mid-Atlantic Ridge at ca. 41°S to test its validity by reconstructing a low-resolution record covering the last two glacial-interglacial cycles. Our paleotemperature record reveals large changes in temperature for Terminations I and II, when permanent thermocline temperature increased by as much as 8°C. The G. inflata paleotemperature record suggests that oceanic fronts repeatedly migrated over the location of site PS2495-3 during the last 160 kyr. This study shows the potential of G. inflata Mg/Ca to reconstruct paleotemperatures in the permanent thermocline.
Resumo:
Evidence of rapid climatic oscillations like those observed in the Greenland ice cores and sediments from high latitudes of the northern Atlantic have been recognized in the pulses of terrigenous material to continental margin sediments off Cameroon. Fe/Ca ratios used as a parameter to quantify the relative proportions of terrigenous fluxes versus marine carbonate monitor the variability of the west African monsoon. They reveal the history of abrupt changes in precipitation over western and central Africa during the past 52 kyr. These rapid changes are particularly pronounced during the last glacial period and occur at timescales of a few thousand years. Stable oxygen isotope (delta18O) records of Globigerinoides ruber (pink) show high negative values reflecting periods of high monsoon precipitation. The Fe/Ca pattern is very similar to the Dansgaard-Oeschger cycles from the Greenland ice cores. The good correspondence between the warm interstadials of the Dansgaard-Oeschger cycles from the GISP2 ice core records and the high pulses of Fe/Ca sedimentation in our core suggest a strong teleconnection between the low-latitude African climate and the high-latitude northern hemisphere climate oscillations during the last glacial. This climatic link is probably vested in the west African monsoonal fluctuation that alters tropical sea surface temperatures, thermohaline circulations and in turn net export of heat from the south to the north Atlantic, coupled with the variability of the low-latitude southeast trade winds.
Resumo:
A high-resolution piston core, ENAM93-21, from a water depth of 1020 m near the Faeroe-Shetland Channel is investigated for variations in magnetic susceptibility, surface oxygen isotopes, grain size distribution, content of ice-rafted detritus (IRD), and distribution of planktonic and benthic foraminifera. The core, covering the last 58,000 years, is correlated with the Greenland ice cores and compared with paleorecords from the Norwegian Sea and the North Atlantic Ocean. All fifteen Dansgaard-Oeschger climatic cycles recognized from the investigated time period in the Greenland ice cores have been identified in the ENAM93-21 core. Each cycle is subdivided into three intervals on the basis of characteristic benthic and planktonic faunas. Interstadial intervals contain a relatively warm planktonic fauna and a benthic fauna similar to the modern fauna in the Norwegian Sea. This indicates thermohaline convection as at present, with a significant contribution of deep water to the North Atlantic Deep Water (NADW). Transitional cooling intervals are characterized by more cold water planktonic foraminfera and ice-related benthic species. The benthic fauna signifies restricted bottom water conditions and a reduced contribution to the NADW. The peak abundance of N. pachyderma (s.) and the coldest surface water conditions are found in the stadial intervals. The benthic fauna is dominated by species with an association to Atlantic Intermediate Water, suggesting an increased Atlantic influence in the Norwegian Sea, and there was probably no contribution to the NADW through the Faeroe-Shetland Channel. The three different modes of circulation can be correlated to paleoceanographic events in the Norwegian Sea and the North Atlantic Ocean.
Resumo:
Seasonal depth stratified plankton tows, sediment traps and core tops taken from the same stations along a transect at 29°N off NW Africa are used to describe the seasonal succession, the depth habitats and the oxygen isotope ratios (delta18O(shell)) of five planktic foraminiferal species. Both the delta18O(shell) and shell concentration profiles show variations in seasonal depth habitats of individual species. None of the species maintain a specific habitat depth exclusively within the surface mixed layer (SML), within the thermocline, or beneath the thermocline. Globigerinoides ruber (white) and (pink) occur with moderate abundance throughout the year along the transect, with highest abundances in the winter and summer/fall season, respectively. The average delta18O(shell) of G. ruber (w) from surface sediments is similar to the delta18O(shell) values measured from the sediment-trap samples during winter. However, the delta18O(shell) of G. ruber (w) underestimates sea surface temperature (SST) by 2 °C in winter and by 4 °C during summer/fall indicating an extension of the calcification/depth habitat into colder thermocline waters. Globigerinoides ruber (p) continues to calcify below the SML as well, particularly in summer/fall when the chlorophyll maximum is found within the thermocline. Its vertical distribution results in delta18O(shell) values that underestimate SST by 2 °C. Shell fluxes of Globigerina bulloides are highest in summer/fall, where it lives and calcifies in association with the deep chlorophyll maximum found within the thermocline. Pulleniatina obliquiloculata and Globorotalia truncatulinoides, dwelling and calcifying a part of their lives in the winter SML, record winter thermocline (~180 m) and deep surface water (~350 m) temperatures, respectively. Our observations define the seasonal and vertical distribution of multiple species of foraminifera and the acquisition of their delta18O(shell).
Resumo:
The interglacial known as Marine Isotope Stage 11 has been proposed to be analogous to the Holocene, owing to similarities in the amplitudes of orbital forcing. It has been difficult to compare the periods, however, because of the long duration of Stage 11 and a lack of detailed knowledge of any extreme climate events that may have occurred. Here we use the distinctive phasing between seasurface temperatures and the oxygen-isotope records of benthic foraminifera in the southeast Atlantic Ocean to stratigraphically align the Holocene interglacial with the first half of the Marine Isotope Stage 11 interglacial optimum. This alignment suggests that the second half of Marine Isotope Stage 11 should not be used as a reference for 'pre-anthropogenic' greenhouse-gas emissions. By compiling benthic carbon-isotope records from sites in the Atlantic Ocean on a single timescale, we also find that meridional overturning circulation strengthened about 415,000 years ago, at a time of high orbital obliquity. We propose that this mechanism transported heat to the high northern latitudes, inhibiting significant ice-sheet build-up and prolonging interglacial conditions. We suggest that this mechanism may have also prolonged other interglacial periods throughout the past 800,000 years.