733 resultados para Oscillators, Sweep
A simulation-based design method to transfer surface mount RF system to flip-chip die implementation
Resumo:
The flip-chip technology is a high chip density solution to meet the demand for very large scale integration design. For wireless sensor node or some similar RF applications, due to the growing requirements for the wearable and implantable implementations, flip-chip appears to be a leading technology to realize the integration and miniaturization. In this paper, flip-chip is considered as part of the whole system to affect the RF performance. A simulation based design is presented to transfer the surface mount PCB board to the flip-chip die package for the RF applications. Models are built by Q3D Extractor to extract the equivalent circuit based on the parasitic parameters of the interconnections, for both bare die and wire-bonding technologies. All the parameters and the PCB layout and stack-up are then modeled in the essential parts' design of the flip-chip RF circuit. By implementing simulation and optimization, a flip-chip package is re-designed by the parameters given by simulation sweep. Experimental results fit the simulation well for the comparison between pre-optimization and post-optimization of the bare die package's return loss performance. This design method could generally be used to transfer any surface mount PCB to flip-chip package for the RF systems or to predict the RF specifications of a RF system using the flip-chip technology.
Resumo:
In this thesis a novel theory of electrocatalysis at metal (especially noble metal)/solution interfaces was developed based on the assumption of metal adatom/incipient hydrous oxide cyclic redox transitions. Adatoms are considered as metastable, low coverage species that oxidise in-situ at potentials of often significantly cathodic to the regular metal/metal oxide transition. Because the adatom coverage is so low the electrochemical or spectroscopic response for oxidation is frequently overlooked; however, the product of such oxidation, referred to here as incipient hydrous oxide seems to be the important mediator in a wide variety of electrocatalytically demanding oxidation processes. Conversely, electrocatalytically demanding reductions apparently occur only at adatom sites at the metal/solution interface - such reactions generally occur only at potentials below, i.e. more cathodic than, the adatom/hydrous oxide transition. It was established that while silver in base oxidises in a regular manner (forming initially OHads species) at potentials above 1.0 V (RHE), there is a minor redox transition at much lower potentials, ca. o.35 v (RHE). The latter process is assumed to an adatom/hydrous oxide transition and the low coverage Ag(l) hydrous oxide (or hydroxide) species was shown to trigger or mediate the oxidation of aldehydes, e. g. HCHO. The results of a study of this system were shown to be in good agreement with a kinetic model based on the above assumptions; the similarity between this type of behaviour and enzyme-catalysed processes - both systems involve interfacial active sites - was pointed out. Similar behaviour was established for gold where both Au(l) and Au(lll) hydrous oxide mediators were shown to be the effective oxidants for different organic species. One of the most active electrocatalytic materials known at the present time is platinum. While the classical view of this high activity is based on the concept of activated chemisorption (and the important role of the latter is not discounted here) a vital role is attributed to the adatom/hydrous oxide transition. It was suggested that the well known intermediate (or anomalous) peak in the hydrogen region of the cyclic voltanmogram for platinum region is in fact due to an adatom/hydrous oxide transition. Using potential stepping procedures to minimise the effect of deactivating (COads) species, it was shown that the onset (anodic sweep) and termination (cathodic sweep) potential for the oxidation of a wide variety of organics coincided with the potential for the intermediate peak. The converse was also shown to apply; sluggish reduction reactions, that involve interaction with metal adatoms, occur at significant rates only in the region below the hydrous oxide/adatom transition.
Resumo:
This thesis is concerned with an investigation of the anodic behaviour of ruthenium and iridium in aqueous solution and particularly of oxygen evolution on these metals. The latter process is of major interest in the large-scale production of hydrogen gas by the electrolysis of water. The presence of low levels of ruthenium trichloride ca. 10-4 mol dm-3 in acid solution give a considerable increase in the rate of oxygen evolution from platinum and gold, but not graphite, anodes. The mechanism of this catalytic effect was investigated using potential step and a.c. impedance technique. Earlier suggestions that the effect is due to catalysis by metal ions in solution were proved to be incorrect and it was shown that ruthenium species were incorporated into the surface oxide film. Changes in the oxidation state of these ruthenium species is probably responsible for the lowering of the oxygen overvoltage. Both the theoretical and practical aspects of the reaction were complicated by the fact that at constant potential the rates of both the catalysed and the uncatalysed oxygen evolution processes exhibit an appreciable, continuous decrease with either time or degree of oxidation of the substrate. The anodic behaviour of iridium in the oxide layer region has been investigated using conventional electrochemical techniques such as cyclic voltammetry. Applying a triangular voltage sweep at 10 Hz, 0.01 to 1.50V increases the amount of electric charge which the surface can store in the oxide region. This activation effect and the mechanism of charge storage is discussed in terms of both an expanded lattice theory for oxide growth on noble metals and a more recent theory of irreversible oxide formation with subsequent stoichiometry changes. The lack of hysteresis between the anodic and cathodic peaks at ca. 0.9 V suggests that the process involved here is proton migration in a relatively thick surface layer, i.e. that the reaction involved is some type of oxide-hydroxide transition. Lack of chloride ion inhibition in the anodic region also supports the irreversible oxide formation theory; however, to account for the hydrogen region of the potential sweep a compromise theory involving partial reduction of the outer regions of iridium oxide film is proposed. The loss of charge storage capacity when the activated iridium surface is anodized for a short time above ca. 1.60 V is attributed to loss by corrosion of the outer active layer from the metal surface. The behaviour of iridium at higher anodic potentials in acid solution was investigated. Current-time curves at constant potential and Tafel plots suggested that a change in the mechanism of the oxygen evolution reaction occurs at ca. 1.8 V. Above this potential, corrosion of the metal occurred, giving rise to an absorbance in the visible spectrum of the electrolyte (λ max = 455 nm). It is suggested that the species involved was Ir(O2)2+. A similar investigation in the case of alkaline electrolyte gave no evidence for a change in mechanism at 1.8 V and corrosion of the iridium was not observed. Oxygen evolution overpotentials were much lower for iridium than for platinum in both acidic and alkaline solutions.
Resumo:
With the growing demand for high-speed and high-quality short-range communication, multi-band orthogonal frequency division multiplexing ultra-wide band (MB-OFDM UWB) systems have recently garnered considerable interest in industry and in academia. To achieve a low-cost solution, highly integrated transceivers with small die area and minimum power consumption are required. The key building block of the transceiver is the frequency synthesizer. A frequency synthesizer comprised of two PLLs and one multiplexer is presented in this thesis. Ring oscillators are adopted for PLL implementation in order to drastically reduce the die area of the frequency synthesizer. The poor spectral purity appearing in the frequency synthesizers involving mixers is greatly improved in this design. Based on the specifications derived from application standards, a design methodology is presented to obtain the parameters of building blocks. As well, the simulation results are provided to verify the performance of proposed design.
Resumo:
ct: We introduce a new concept for stimulated-Brillouin-scattering-based slow light in optical fibers that is applicable for broadly-tunable frequency-swept sources. It allows slow light to be achieved, in principle, over the entire transparency window of the optical fiber. We demonstrate a slow light delay of 10 ns at 1.55 μm using a 10-m-long photonic crystal fiber with a source sweep rate of 400 MHz/μs and a pump power of 200 mW. We also show that there exists a maximal delay obtainable by this method, which is set by the SBS threshold, independent of sweep rate. For our fiber with optimum length, this maximum delay is ~38 ns, obtained for a pump power of 760 mW.
Resumo:
Cells have evolved oscillators with different frequencies to coordinate periodic processes. Here we studied the interaction of two oscillators, the cell division cycle (CDC) and the yeast metabolic cycle (YMC), in budding yeast. Previous work suggested that the CDC and YMC interact to separate high oxygen consumption (HOC) from DNA replication to prevent genetic damage. To test this hypothesis, we grew diverse strains in chemostat and measured DNA replication and oxygen consumption with high temporal resolution at different growth rates. Our data showed that HOC is not strictly separated from DNA replication; rather, cell cycle Start is coupled with the initiation of HOC and catabolism of storage carbohydrates. The logic of this YMC-CDC coupling may be to ensure that DNA replication and cell division occur only when sufficient cellular energy reserves have accumulated. Our results also uncovered a quantitative relationship between CDC period and YMC period across different strains. More generally, our approach shows how studies in genetically diverse strains efficiently identify robust phenotypes and steer the experimentalist away from strain-specific idiosyncrasies.
Resumo:
© 2016 Burnetti et al. Cells have evolved oscillators with different frequencies to coordinate periodic processes. Here we studied the interaction of two oscillators, the cell division cycle (CDC) and the yeast metabolic cycle (YMC), in budding yeast. Previous work suggested that the CDC and YMC interact to separate high oxygen consumption (HOC) from DNA replication to prevent genetic damage. To test this hypothesis, we grew diverse strains in chemostat and measured DNA replication and oxygen consumption with high temporal resolution at different growth rates. Our data showed that HOC is not strictly separated from DNA replication; rather, cell cycle Start is coupled with the initiation of HOC and catabolism of storage carbohydrates. The logic of this YMC-CDC coupling may be to ensure that DNA replication and cell division occur only when sufficient cellular energy reserves have accumulated. Our results also uncovered a quantitative relationship between CDC period and YMC period across different strains. More generally, our approach shows how studies in genetically diverse strains efficiently identify robust phenotypes and steer the experimentalist away from strain-specific idiosyncrasies.
Resumo:
This paper presents data relating to occupant pre-evacuation times from university and hospital outpatient facilities. Although the two occupancies are entirely different, they do employ relatively similar procedures: members of staff sweep areas to encourage individuals to evacuate.However the manner in which the dependent population reacts to these procedures is quite different. In the hospital case, the patients only evacuated once a member of the nursing staff had instructed them to do so, while in the university evacuation, the students were less dependent upon the actions of the staff, with over 50% of them evacuating with no prior prompting. In addition, the student pre-evacuation time was found to be dependent on their level of engagement in various activities.
Resumo:
Lead-free solder paste printing process accounts for majority of the assembly defects in the electronic manufacturing industry. The study investigates rheological behaviour and stencil printing performance of the lead-free solder pastes (Sn/Ag/Cu). Oscillatory stress sweep test was carried out to study the visco-elastic behaviour of the lead-free solder pastes. The visco-elastic behaviour of the paste encompasses solid and liquid characteristic of the paste, which could be used to study the flow behaviour experienced by the pastes during the stencil printing process. From this study, it was found that the solid characteristics (G0) is higher than the liquid characteristic (G0 0) for the pastes material. In addition, the results from the study showed that the solder paste with a large G0 = G0 0 has a higher cohesiveness resulting in poor withdrawal of the paste during the stencil printing process. The phase angles (d) was used to correlate the quality of the dense suspensions to the formulation of solder paste materials. This study has revealed the value of having a rheological measurement for explaining and characterising solder pastes for stencil printing. As the demand for lead free pastes increases rheological measurements can assist with the formulation or development of new pastes.
Resumo:
Solder pastes and isotropic conductive adhesives (ICAs) are widely used as a principal bonding medium in the electronic industry. This study investigates the rheological behaviour of the pastes (solder paste and isotropic conductive adhesives) used for flip-chip assembly. Oscillatory stress sweep test are performed to evaluate solid characteristic and cohesiveness of the lead-free solder pastes and isotropic conductive adhesive paste materials. The results show that the G' (storage modulus) is higher than G '' (loss modulus) for the pastes material indicating a solid like behaviour. It result shows that the linear visco-elastic region for the pastes lies in a very small stress range, below 10 Pa. in addition, the stress at which the value of storage modulus is equal to that of loss modulus can be used as an indicator of the paste cohesiveness. The measured cross-over stress at G'=G '' shows that the solder paste has higher stress at G'=G '' compared to conductive adhesives. Creep-recovery test method is used to study the slump behaviour in the paste materials. The conductive adhesive paste shows a good recovery when compared to the solder pastes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The paper reports on the investigation of the rheological behaviour new lead-free solder pastes formulations for use in flip-chip assembly applications. The study is made up of three parts; namely the evaluation of the effect of plate geometry, the effect of temperature and processing environment and the effect of torsional frequencies on the rheological measurements. Different plate geometries and rheological tests were used to evaluate new formulations in terms of wall slip characteristics, linear viscoelastic region and shear thinning behaviour. A technique which combines the use of the creep-recovery and dynamic frequency sweep tests was used to further characterise the paste structure, rheological behaviour and the processing performance of the new paste formulations. The technique demonstrated in this study has wide utility for R & D personnel involved in new paste formulation, for implementing quality control procedures used in paste manufacture and packaging and for qualifying new flip-chip assembly lines
Resumo:
Purpose – The purpose of this paper is to investigate the rheological behaviour of three different lead-free solder pastes used for surface mount applications in the electronic industry.Design/methodology/approach – This study concerns the rheological measurements of solder paste samples and is made up of three parts. The first part deals with the measurement of rhelogical properties with three different measuring geometries, the second part looks into the effect of frequencies on oscillatory stress sweep measurements and the final part reports on the characterisation and comparison of three different types of Pb-free solder pastes. Findings – Among the three geometries, the serrated parallel plate was found effective in minimising the wall-slip effect. From the oscillatory stresssweep data with different frequencies; it was observed that the linear visco-elastic region is independent of frequency for all the solder paste samples. To understand the shear thinning behaviour of solder paste, the well known Cross and Carreau models were fitted to the viscosity data. Moreover,creep-recovery and dynamic frequency-sweep tests were also carried out without destroying the sample’s structure and have yielded useful information on the pastes behaviour.Research limitations/implications – More extensive research is needed to fully characterise the wall-slip behaviour during the rheological measurements of solder pastes. Practical implications – The rheological test results presented in this paper will be of important value for research and development, quality control and facilitation of the manufacturing of solder pastes and flux mediums. Originality/value – This paper shows how wall-slip effects can be effectively avoided during rheological measurements of solder pastes. The paper also outlines how different rheological test methods can be used to characterise solder paste behaviours
Resumo:
The Irish hospitals sweepstake was established by statute in the Irish Free State in 1930 to fund the state’s hospital service. The vast majority of tickets were sold outside Ireland, particularly in countries where such gambling was illegal at the time. Initially the largest market was in the United Kingdom, but following the introduction of restrictive legislation there in 1934, the promoters of the sweepstake turned their attentions to North America and after 1936 the United States became the largest source of contributions to the Irish sweep. This article examines a number of factors concerning the relationship of the Irish sweep with the USA, including: an effort to estimate the amount of money contributed to the sweep by Americans; the role of the Irish diaspora and of prominent republicans, including Joseph McGarrity and Connie Neenan, in the illegal ticket distribution network; the efforts of American Federal agencies and government departments to disrupt the sweepstake organisation in America; how the sweep was used by those who sought to legalise gambling in the USA; the attitudes of both the Irish and American governments to the sweep’s activities in America; and how the legalisation of gambling in America brought about the demise of the Irish sweep.
Resumo:
This paper examines the importance of British contributions to the success of the Irish hospitals sweepstake. In its early years, up to three-quarters of these tickets were sold in Britain, bringing millions of pounds into Ireland annually to improve and expand the state's hospitals. The vast amount of money leaving Britain in this way angered the British government and forced it to introduce new legislation to curtail the activities of the Irish sweep. The paper will highlight the extent to which the success of the sweepstake depended on the market for tickets in Britain; the threat to the sweep's survival posed by the restriction of its activities in Britain after 1935; the role of the sweepstake controversy in exacerbating further already strained relations between Britain and the Irish Free State in the 1930s; how the success of the sweep raised the issue of legalising a British lottery; and the eventual decline of the sweepstake as a force in British gambling in the post-war years.
Resumo:
We address the problem of springlike coupling between bosons in an open-chain configuration where the counter-rotating terms are explicitly included. We show that fruitful insight can be gained by decomposing the time-evolution operator of this problem into a pattern of linear-optics elements. This allows us to provide a clear picture of the effects of the counter-rotating terms in the important problem of long-haul entanglement distribution. The analytic control over the variance matrix of the state of the bosonic register allows us to track the dynamics of the entanglement. This helps in designing a global addressing scheme, complemented by a proper initialization of the register, which quantitatively improves the entanglement between the extremal oscillators in the chain, thus providing a strategy for feasible long-distance entanglement distribution.