990 resultados para Organic Rankine Cycle (ORC)
Resumo:
Mangrove sediments are anaerobic ecosystems rich in organic matter. This environment is optimal for anaerobic microorganisms, such as sulphate-reducing bacteria and methanogenic archaea, which are responsible for nutrient cycling. In this study, the diversity of these two functional guilds was evaluated in a pristine mangrove forest using denaturing gradient gel electrophoresis (DGGE) and clone library sequencing in a 50 cm vertical profile sampled every 5.0 cm. DGGE profiles indicated that both groups presented higher richness in shallow samples (0-30 cm) with a steep decrease in richness beyond that depth. According to redundancy analysis, this alteration significantly correlated with a decrease in the amount of organic matter. Clone library sequencing indicated that depth had a strong effect on the selection of dissimilatory sulphate reductase (dsrB) operational taxonomic units (OTUs), as indicated by the small number of shared OTUs found in shallow (0.0 cm) and deep (40.0 cm) libraries. On the other hand, methyl coenzyme-M reductase (mcrA) libraries indicated that most of the OTUs found in the shallow library were present in the deep library. These results show that these two guilds co-exist in these mangrove sediments and indicate important roles for these organisms in nutrient cycling within this ecosystem.
Resumo:
Research of advanced technologies for energy generation contemplates a series of alternatives that are introduced both in the investigation of new energy sources and in the improvement and/or development of new components and systems. Even though significant reductions are observed in the amount of emissions, the proposed alternatives require the use of exhaust gases cleaning systems. The results of environmental analyses based on two configurations proposed for urban waste incineration are presented in this paper; the annexation of integer (Boolean) variables to the environomic model makes it possible to define the best gas cleaning routes based on exergetic cost minimisation criteria. In this first part, the results for steam cogeneration system analysis associated with the incineration of municipal solid wastes (MSW) is presented. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The influence of granulometry and organic treatment of a Brazilian montmorillonite (MMT) clay on the synthesis and properties of poly(styrene-co-n-butyl acrylate)/layered silicate nanocomposites was studied. Hybrid latexes of poly(styrene-co-butyl acrylate)/MMT were synthesized via miniemulsion polymerization using either sodium or organically modified MMT. Five clay granulometries ranging from clay particles smaller than 75 mu m to colloidal size were selected. The size of the clay particles was evaluated by Specific surface area measurements (BET). Cetyl trimethyl ammonium chloride was used as an organic modifier to enhance the clay compatibility with the monomer phase before polymerization and to improve the clav distribution and dispersion within the polymeric matrix after polymerization. The sodium and organically modified natural clays as well as the composites were characterized by X-ray diffraction analysis. The latexes were characterized by dynamic light scattering. The mechanical, thermal, and rheological properties of the composites obtained were characterized by dynamical-mechanical analysis, thermogravimetry, and small amplitude oscillatory, shear tests, respectively. The results showed that smaller the size of the organically modified MMT, the higher the degree of exfoliation of nanoplatelets. Hybrid latexes in presence of Na-MMT resulted in materials with intercalated structures. (C) 2009 Wiley, Periodicals, Inc. J Appl Polym Sci 112: 1949-1958, 2009
Resumo:
Many lab-scale studies have been carried out regarding the effect of feed strategy on the performance of anaerobic sequencing batch reactors (ASBR); however, more detailed pilot-scale studies should be performed to assess the real applicability of this type of operation. Therefore, the objective of this work was to assess the effect of feed strategy or fill time in a 1-m(3) mechanically stirred pilot-scale sequencing batch reactor, treating 0.65 m(3) sanitary wastewater in 8-h cycles at ambient temperature. Two reactor configurations were used: one containing granular biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam as inert support (denominated anaerobic sequencing batch biofilm reactor (AnSBBR)). The reactors were operated under five distinct feed strategies, namely: typical batch and fed-batch for 25%, 50%, 75%, and 100% of the cycle length. Stirring frequency in the ASBR was 40 rpm with two flat-blade turbine impellers and 80 rpm in the AnSBBR with two helix impellers. The results showed that both the ASBR and AnSBBR when operated under typical batch, fed-batch for 50% and 75% of the cycle length, presented improved organic matter removal efficiencies, without significant differences in performance, thus showing important operational flexibility. In addition, the reactors presented operation stability under all conditions.
Resumo:
The removal of sulfate and organic matter was assessed in an ASBR, which treated wastewater containing 500 mg COD L(-1) (3 g COD L(-1) d(-1)) in 8 h-cycles at 30 degrees C. The wastewater was enriched with sulfate at [COD/SO(4)(2-]) ratios of 1.34, 0.67 and 0.34 (8.8,4.5 and 2.2 gSO(4)(2-) L(-1) d(-1)). For each COD/[SO(4)(2-)] ratio fill times used were: 10 min (batch), 3 and 6 h (fed-batch), achieving sulfate reduction of 30%, 72% and 72% (COD/[SO(4)(2-)] of 1.34); 25%, 58% and 55% (COD/[SO(4)(2-)] of 0.67) and 23%, 37% and 27% (COD/[SO(4)(2-)] of 0.34), respectively, and organic matter removal of 87%, 68% and 80% (COD/[SO(4)(2-)] of 1.34); 78%, 75% and 69% (COD/[SO(4)(2-)] of 0.67) and 85%, 84% and 83% (COD/[SO(4)(2-)] of 0.34), respectively. The results showed that fed-batch operation improved sulfate reduction, whereas organic matter removals were similar for batch and fed-batch operation. In addition, increase in sulfate loading in the fed-batch operation improved organic matter removal. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A pilot-scale (1.2 m(3)) anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal for biomass attachment was fed with sulfate-rich wastewater at increasing sulfate concentrations. Ethanol was used as the main organic source. Tested COD/sulfate ratios were of 1.8 and 1.5 for sulfate loading rates of 0.65-1.90 kgSO(4)(2-)/cycle (48 h-cycle) or of 1.0 in the trial with 3.0 gSO(4)(2-) l(-1). Sulfate removal efficiencies observed in all trials were as high as 99%. Molecular inventories indicated a shift on the microbial composition and a decrease on species diversity with the increase of sulfate concentration. Beta-proteobacteria species affiliated with Aminomonas spp. and Thermanaerovibrio spp. predominated at 1.0 gSO(4)(2-) l(-1). At higher sulfate concentrations the predominant bacterial group was Delta-proteobacteria mainly Desulfovibrio spp. and Desulfomicrobium spp. at 2.0 gSO(4)(2-) l(-1), whereas Desulfurella spp. and Coprothermobacter spp. predominated at 3.0 gSO(4)(2-) l(-1). These organisms have been commonly associated with sulfate reduction producing acetate, sulfide and sulfur. Methanogenic archaea(Methanosaeta spp.)was found at 1.0 and 2.0 gSO(4)(2-) l(-1). Additionally, a simplified mathematical model was used to infer on metabolic pathways of the biomass involved in sulfate reduction. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An assessment is made of the atmospheric emissions from the life cycle of fuel ethanol coupled with the cogeneration of electricity from sugarcane in Brazil. The total exergy loss from the most quantitative relevant atmospheric emission substances produced by the life cycle of fuel ethanol is 3.26E+05 kJ/t of C(2)H(5)OH, Compared with the chemical exergy of 1 t of ethanol (calculated as 34.56E + 06 kJ). the exergy loss from the life cycle`s atmospheric emission represents 1.11% of the product`s exergy. The activity that most contributes to atmospheric emission chemical exergy losses is the harvesting of sugarcane through the methane emitted in burning. Suggestions for improved environmental quality and greater efficiency of the life cycle of fuel ethanol with cogenerated energy are: harvesting the sugarcane without burning, renewable fuels should be used in tractors, trucks and buses instead of fossil fuel and the transportation of products and input should be logistically optimized. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Currently, there is an increasing demand for the production of biodiesel and, consequently, there will be an increasing need to treat wastewaters resulting from the production process of this biofuel. The main objective of this work was, therefore, to investigate the effect of applied volumetric organic load (AVOL) on the efficiency, stability, and methane production of an anaerobic sequencing batch biofilm reactor applied to the treatment of effluent from biodiesel production. As inert support, polyurethane foam cubes were used in the reactor and mixing was accomplished by recirculating the liquid phase. Increase in AVOL resulted in a drop in organic matter removal efficiency and increase in total volatile acids in the effluent. AVOLs of 1.5, 3.0, 4.5 and 6.0 g COD L(-1) day(-1) resulted in removal efficiencies of 92%, 81%, 67%, and 50%, for effluent filtered samples, and 91%, 80%, 63%, and 47%, for non-filtered samples, respectively, whereas total volatile acids concentrations in the effluent amounted to 42, 145, 386 and 729 mg HAc L(-1), respectively. Moreover, on increasing AVOL from 1.5 to 4.5 g COD L(-1) day(-1) methane production increased from 29.5 to 55.5 N mL CH(4) g COD(-1). However, this production dropped to 36.0 N mL CH(4) g COD(-1) when AVOL was increased to 6.0 g COD L(-1) day(-1), likely due to the higher concentration of volatile acids in the reactor. Despite the higher concentration of volatile acids at the highest AVOL, alkalinity supplementation to the influent, in the form of sodium bicarbonate, at a ratio of 0.5-1.3 g NaHCO(3) g COD (fed) (-1) , was sufficient to maintain the pH near neutral and guarantee process stability during reactor operation.
Resumo:
This paper reports on the design of a new reactor configuration - an upflow fixed-bed combined anaerobic-aerobic reactor - can operate as a single treatment unit for the removal of nitrogen (approximate to 150 mg N/L) and organic matter (approximate to 1300 mg COD/L) from Lysine plant wastewater. L-Lysine, an essential amino acid for animal nutrition, is produced by fermentation from natural raw materials of agricultural origin, thus generating wastewater with high contents of organic matter and nitrogen. The best operational condition of the reactor was obtained with a hydraulic retention time of 35 h (21 h in the anaerobic zone and 14 h in the aerobic zone) and a recycling ratio (R) of 3.5. In this condition, the COD, total Kjeldahl nitrogen (TKN), and total nitrogen (TN) removal efficiencies were 97%, 96%, and 77%, respectively, with average effluent concentrations of 10 +/- 36 mg COD/L, 2 +/- 1 mg NH(4)(+)-N/L, 8 +/- 3 mg Org-N/L, 1 +/- 1 mg NH(2)(-)-N/L, and 26 +/- 23 mg NH(3)(-)-N/L.
Resumo:
The aim of this work was to investigate the effect of different feeding times (2, 4, and 6 h) and organic loading rates (3, 6 and 12 gCOD l(-1) day(-1)) on the performance of an anaerobic sequencing batch reactor containing immobilized biomass, as well as to verify the minimum amount of alkalinity that can be added to the influent. The reactor, in which mixing was achieved by recirculation of the liquid phase, was maintained at 30 +/- 1A degrees C, possessed 2.5 l reactional volume and treated 1.5 l cheese whey in 8-h cycles. Results showed that the effect of feeding time on reactor performance was more pronounced at higher values of organic loading rates (OLR). During operation at an OLR of 3 gCOD l(-1) day(-1), change in feeding time did not affect efficiency of organic matter removal from the reactor. At an OLR of 6 gCOD l(-1) day(-1), reactor efficiency improved in relation to the lower loading rate and tended to drop at longer feeding times. At an OLR of 12 gCOD l(-1) day(-1) the reactor showed to depend more on feeding time; higher feeding times resulted in a decrease in reactor efficiency. Under all conditions shock loads of 24 gCOD l(-1) day(-1) caused an increase in acids concentration in the effluent. However, despite this increase, the reactor regained stability readily and alkalinity supplied to the influent showed to be sufficient to maintain pH close to neutral during operation. Regardless of applied OLR, operation with feeding time of 2 h was which provided improved stability and rendered the process less susceptible to shock loads.
Resumo:
The main objective of this research was to evaluate the potential use of a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal as inert support for removal Of Sulfide and organic matter effluents from an ASBBR (1.2 m(3)) utilized for treatment of sulfate-rich wastewater. The cycle time was 48 h, including the steps of feeding (2 h), reaction with continuous liquid recirculation (44 h) and discharge (2 h). COD removal efficiency was up to 90% and the effluents total sulfide concentrations (H(2)S, HS(-), S(2-)) remained in the range of 1.5 to 7.5 mg.l(-1) during the 50 days of operation (25 cycles). The un-ionized Sulfide and ionized sulfides were converted by biological process to elemental sulfur (S(0)) under oxygen limited conditions. The results obtained in the bench-scale reactor were used to design an ASBBR in pilot scale for use in post-treatment to achieve the emission standards (sulfide and COD) for sulfate reduction. The pilot-scale reactor, with a total volume of 0.43 m(3), the COD and total sulfide removal achieved 88% and 57%, respectively, for a cycle time of 48 h (70 days of operation or 35 cycles).
Resumo:
The purpose of this study was to assess the anaerobic degradation of black liquor with and without additional carbon sources. Batch experiments were conducted using black liquor, from an integrated pulp and paper mill adding ethanol, methanol and nutrients. The PCR/DGGE technique was used to characterize the structure of the microbial community. The addition of extra sources of carbon did not significantly influence the degradation of black liquor under the conditions evaluated and the microbial community was similar in all experiments. It was observed an increase in some members of the archaeal in reactors that had the best efficiencies for removal of black liquor (around 7.5%). Either ethanol or methanol can be used as co-substrates because the produce the same quantitative and qualitative effect.
Resumo:
Biological sulfate reduction was studied in a laboratory-scale anaerobic sequential batch reactor (14 L) containing mineral coal for biomass attachment. The reactor was fed industrial wastewater with increasingly high sulfate concentrations to establish its application limits. Special attention was paid to the use of butanol in the sulfate reduction that originated from melamine resin production. This product was used as the main organic amendment to support the biological process. The reactor was operated for 65 cycles (48 h each) at sulfate loading rates ranging from 2.2 to 23.8 g SO(4)(2-)/cycle, which corresponds to sulfate concentrations of 0.25, 0.5,1.0, 2.0 and 3.0 g SW(4)(2-)L(-1). The sulfate removal efficiency reached 99% at concentrations of 0.25, 0.5 and 1.0 g SO(4)(2-)L(-1). At higher sulfate concentrations (2.0 and 3.0 g SO(4)(2-)L(-1)), the sulfate conversion remained in the range of 71-95%. The results demonstrate the potential applicability of butanol as the carbon source for the biological treatment of sulfate in an anaerobic batch reactor. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a technological viability study of wastewater treatment in an automobile industry by an anaerobic sequencing batch biofilm reactor containing immobilized biomass (AnSBBR) with a draft tube. The reactor was operated in 8-h cycles, with agitation of 400 rpm, at 30 degrees C and treating 2.0 L wastewater per cycle. Initially the efficiency and stability of the reactor were studied when supplied with nutrients and alkalinity. Removal efficiency of 88% was obtained at volumetric loading rate (VLR) of 3.09 mg COD/L day. When VLR was increased to 6.19 mg COD/L day the system presented stable operation with reduction in efficiency of 71%. In a second stage the AnSBBR was operated treating wastewater in natura, i.e., without nutrients supplementation, only with alkalinity, thereby changing feed strategy. The first strategy consisted in feeding 2.0 L batch wise (10 min), the second in feeding 1.0 L of influent batch wise (10 min) and an additional 1.0 L fed-batch wise (4 h), both dewatering 2.0 L of the effluent in 10 min. The third one maintained 1.0 L of treated effluent in the reactor, without discharging, and 1.0 L of influent was fed fed-batch wise (4 h) with dewatering 1.0 L of the effluent in 10 min. For all implemented strategies (VLR of 1.40, 2.57 and 2.61 mg COD/L day) the system presented stability and removal efficiency of approximately 80%. These results show that the AnSBBR presents operational flexibility, as the influent can be fed according to industry availability. In industrial processes this is a considerable advantage, as the influent may be prone to variations. Moreover, for all the investigated conditions the kinetic parameters were obtained from fitting a first-order model to the profiles of organic matter, total volatile acids and methane concentrations. Analysis of the kinetic parameters showed that the best strategy is feeding 1.0 L of influent batchwise (10 min) and 1.0 L fed-batch wise (4 h) in 8-h cycle. (c) 2007 Elsevier B.V. All rights reserved.