945 resultados para Optical measurements.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple Langmuir probe technique has been used to measure the electron density, electron temperature, and plasma potential in the late stages (>5 mu s) of a laser ablated plasma plume. In the plasma, formed following 248 nm laser irradiation of a copper target, in vacuum at a laser fluence of 2.5 J cm(-2), electron densities of similar to 10(18) m(-3) and temperatures of similar to 0.5 eV were measured. These values are comparable with those reported previously using Faraday cup detectors and optical emission spectroscopy, respectively. (C) 1997 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Otto configuration attenuated total reflection (ATR) measurements of the excitation of surface plasmons in the infrared have been carried out on YBCO films deposited on MgO (100) substrates. The dielectric constants for YBCO at 3.392 mu m are determined to be -10 + 15i for c-axis material. The anisotropic nature of the cuprate is seen from films with other orientations: nearly a-axis material has constants of 4.0 + 7.0i. It is thus not metallic in its optical response along the c-axis which lies parallel to the substrate plane. Ellipsometric measurements in the visible on c-axis material point to a maximum surface plasmon energy of 1 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a complete application capable of tracking multiple objects in an environment monitored by multiple cameras. The system has been specially developed to be applied to sport games, and it has been evaluated in a real association-football stadium. Each target is tracked using a local importance-sampling particle filter in each camera, but the final estimation is made by combining information from the other cameras using a modified unscented Kalman filter algorithm. Multicamera integration enables us to compensate for bad measurements or occlusions in some cameras thanks to the other views it offers. The final algorithm results in a more accurate system with a lower failure rate. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3114605]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile sonochemical method has been developed to prepare very small zinc sulfide nanoparticles (ZnS NPs) of extremely small size about 1. nm in diameter using a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the NPs were determined in depth with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) analysis, and UV-vis absorption spectroscopy. The energy band gap measurements of ZnS NPs were calculated by UV-vis absorption spectroscopy. One of the interesting features of the present work is that the wide band gap semiconductor ZnS nanocrystals were prepared which are used in the fabrication of photonic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overdense plasmas are usually opaque to laser light. However, when the light is of sufficient intensity to drive electrons in the plasma to near light speeds, the plasma becomes transparent. This process—known as relativistic transparency—takes just a tenth of a picosecond. Yet all studies of relativistic transparency so far have been restricted to measurements collected over timescales much longer than this, limiting our understanding of the dynamics of this process. Here we present time-resolved electric field measurements (with a temporal resolution of ~ 50 fs) of the light, initially reflected from, and subsequently transmitted through, an expanding overdense plasma. Our result provides insight into the dynamics of the transparent-overdense regime of relativistic plasmas, which should be useful in the development of laser-driven particle accelerators, X-ray sources and techniques for controlling the shape and contrast of intense laser pulses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear optics is an essential component of modern laser systems and optoelectronic devices. It has also emerged as an important tool in probing the electronic, vibrational, magnetic, and crystallographic structure of materials ranging from oxides and metals, to polymers and biological samples. This review focuses on the specific technique of optical second harmonic generation (SHG), and its application in probing ferroelectric complex oxide crystals and thin films. As the dominant SHG interaction mechanism exists only in materials that lack inversion symmetry, SHG is a sensitive probe of broken inversion symmetry, and thus also of bulk polar phenomena in materials. By performing in-situ SHG polarimetry experiments in different experimental conditions such as sample orientation, applied electric field, and temperature, one can probe ferroelectric hysteresis loops and phase transitions. Careful modeling of the polarimetry data allows for the determination of the point group symmetry of the crystal. In epitaxial thin films with a two-dimensional arrangement of well-defined domain orientations, one can extract information about intrinsic material properties such as nonlinear coefficients, as well as microstructural information such as the local statistics of the different domain variants being probed. This review presents several detailed examples of ferroelectric systems where such measurements and modeling are performed. The use of SHG microscopic imaging is discussed, and its ability to reveal domain structures and phases not normally visible with linear optics is illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the mechanisms for fluorescence enhancement and energy transfer near a gold tip in apertureless scanning near-field optical microscopy. Using a simple quasi-static model, we show that the observed enhancement of fluorescence results from competition between enhancement and quenching, and is dependent on a range of experimental parameters. We find good qualitative agreement with the results of measurements of the effect of both sharp and blunt tips on quantum dot fluorescence, and provide a demonstration of tip-enhanced fluorescence imaging with 60 nm resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical signals measured in apertureless scanning near field optical microscopy (ASNOM) under ambient conditions are found to be affected significantly by the thin water layer absorbed on the surface under investigation, the presence of which is detected through measurements of the shear force experienced by the tip. This water layer also results in a large hysteresis between optical signals measured during approach and withdrawal of the tip to the sample surface. The role of this effect in ASNOM is anticipated to be significant, with the possibility of resultant topographically induced artefacts for ASNOM involving intermittent contact of tip and sample, but also providing a potential mechanism for nanoscale optical resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have carried out optical Thomson scattering measurements from a laser induced breakdown in He at 1 atmosphere. The breakdown was created with a Nd:YAG laser with 9ns pulse duration and 400mJ pulse energy focused into a chamber filled with He. A second harmonic Nd: YAG laser with 9ns pulses and up to 80mJ energy was used to obtain temporally and spatially resolved data on the electron density and temperature. In parallel experiments, we measured the emission of the 447.1nm line from He I. Initial results suggest good agreement between densities inferred but full Abel inversion is needed for conclusive results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen is one of the most common impurities in diamond. On a substitutional site it acts as a deep donor, approximately 1.7 eV below the conduction band. Irradiation of nitrogen containing diamond and subsequent annealing creates the nitrogen vacancy centre, which has recently attracted much attention for quantum information processing application. Another possible product of irradiation and annealing of nitrogen containing diamond is interstitial nitrogen. Presumably, a mobile carbon interstitial migrates to a substitutional nitrogen to produce an interstitial nitrogen complex which may or may not be mobile. The configuration(s) of interstitial nitrogen related defects (e.g. bond centred, [001]-split) are not known. An infra-red (IR) absorption peak at 1450 cm-1 labelled H1a has been associated with an nitrogen interstitial complex. [1] Theoretical modelling suggested that this IR local mode is due to a bond centred nitrogen interstitial [2]. However, more recent modelling [3] suggests that this defect is mobile at temperatures were H1a is stable and instead assign H1a to two nitrogen atoms occupying a single lattice site in a [001]-split configuration. To date no electron paramagnetic resonance (EPR) spectra have been conclusively associated with an interstitial nitrogen defect.

In this study we present data from new EPR and optical absorption studies in combination with uniaxial stress of nitrogen interstitial related defects in electron irradiated and annealed nitrogen doped diamond. These measurements yield symmetry information about the defects allowing us to determine which of the proposed models are possible. EPR spectra of nitrogen interstitial related defects in samples isotopically enriched with 15N are reported and we show that these explain the lack of previous EPR data for these defects. Correlations between the IR absorbance and the integrated intensity of the new EPR defects are studied for varying irradiation doses and annealing temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arrays of gold nanotubes with polypyrrole cores were grown on glass substrates by electrodeposition into thin film porous alumina templates. Measurements of optical transmission revealed strong extinction peaks related to plasmonic resonances, which were sensitive to the polarization state and angle of incidence. On prolonging the electrodeposition of gold, the polypyrrole core became fully encapsulated and this had a dramatic effect on the optical properties of the arrays, which was rationalized by finite element simulation of the local field intensities resulting from plasmon excitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the violation of local realism in Bell tests involving homodyne measurements performed on multimode continuous-variable states. By binning the measurement outcomes in an appropriate way, we prove that the Mermin-Klyshko inequality can be violated by an amount that grows exponentially with the number of modes. Furthermore, the maximum violation allowed by quantum mechanics can be attained for any number of modes, albeit requiring a quantum state whose generation is hardly practicable. Interestingly, this exponential increase of the violation holds true even for simpler states, such as multipartite GHZ states. The resulting benefit of using more modes is shown to be significant in practical multipartite Bell tests by analyzing the increase of the robustness to noise with the number of modes. In view of the high efficiency achievable with homodyne detection, our results thus open a possible way to feasible loophole-free Bell tests that are robust to experimental imperfections. We provide an explicit example of a three-mode state (a superposition of coherent states) which results in a significantly high violation of the Mermin-Klyshko inequality (around 10%) with homodyne measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper brings together and analyzes recent work based on the interpretation of the electrochemical measurements made on a modified micro-abrasion-corrosion tester used in several research programmes. These programmes investigated the role of abradant size, test solution pH in abrasion-corrosion of biomaterials, the abrasion-corrosion performance of sintered and thermally sprayed tungsten carbide surfaces under downhole drilling environments and the abrasion-corrosion of UNS S32205 duplex stainless steel. Various abrasion tests were conducted under two-body grooving, three-body rolling and mixed grooving-rolling abrasion conditions, with and without abrasives, on cast F75 cobalt-chromium-molybdenum (CoCrMo) alloy in simulated body fluids, 2205 in chloride containing solutions as well as sprayed and sintered tungsten carbide surfaces in simulated downhole fluids. Pre- and post-test inspections based on optical and scanning electron microscopy analysis are used to help interpret the electrochemical response and current noise measurements made in situ during micro-abrasion-corrosion tests. The complex wear and corrosion mechanisms and their dependence on the microstructure and surface composition as a function of the pH, abrasive concentration, size and type are detailed and linked to the electrochemical signals. The electrochemical versus mechanical processes are plotted for different test parameters and this new approach is used to interpret tribo-corrosion test data to give greater insights into different tribo-corrosion systems. Thus new approaches to interpreting in-situ electrochemical responses to surfaces under different abrasive wear rates, different abrasives and liquid environments (pH and NaCl levels) are made. This representation is directly related to the mechano-electrochemical processes on the surface and avoids quantification of numerous synergistic, antagonistic and additive terms associated with repeat experiments. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present core–shell nanowire arrays of gold coated with a nanometric layer of cobalt. Despite the extremely small Co volume, these core–shell nanowires display large magneto-optical activity and plasmonic resonance determined by the geometry of the structure. Therefore, we are able to tune both the plasmonic and magneto-optical response in the visible range. Through optical and ellipsometric measurements in transmission, and applying a magnetic field to the sample, it is possible to modulate the value of the phase angle (Del {Δ}) between the S and P polarised components. It was found that the core–shell sample produced an order of magnitude larger variation in Del with changing magnetic field direction, compared with hollow cobalt tubes. The enhancement of magneto optical properties through the plasmonic nature of the gold core is complemented with the ability to induce magnetic influence over optical properties via an externally applied field. Moreover, we demonstrate for the first time the ability to use the remanent magnetisation of the Co, in conjunction with the optical properties defined by the Au, to observe remanent optical states in this uniquely designed structure. This new class of magnetoplasmonic metamaterial has great potential in a wide range of applications, from bio-sensing to data storage due to the tuneable nature of multiple resonance modes and dual functionality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel diffusive gradients in thin film probe developed comprises diffusive gel layer of silver iodide (AgI) and a back-up Microchelex resin gel layer. 2D high-resolution images of sulfide and trace metals were determined respectively on the AgI gel by densitometric analysis and on the Microchelex resin layer with laser-ablation-inductively-coupled plasma mass spectrometry (LA-ICP-MS).We investigated the validity of the analytical procedures used for the determination of sulfide and trace metals. We found low relative standard deviations on replicate measurements, linear trace-metal calibration curves between the LA-ICP-MS signal and the true trace-metal concentration in the resin gel, and a good agreement of the sulfide results obtained with the AgI resin gel and with other analytical methods. The method was applied on anoxic sediment pore waters in an estuarine and marine system. Simultaneous remobilization of sulfide and trace metals was observed in the marine sediment.