715 resultados para Optical Fiber
Resumo:
We present a concept for all-optical differential phase-shift keying (DPSK) signal regeneration, based on a new design of Raman amplified nonlinear loop mirror (RA-NOLM). We demonstrate simultaneous amplitude-shape regeneration and phase noise reduction in high-speed DPSK systems by use of the RA-NOLM combined with spectral filtering.
Resumo:
PMMA based polymer optical fibre Bragg gratings have been used for humidity, temperature and concentration sensing. Due to the water affinity of PMMA, the characteristic wavelength of the grating is largely modulated by the water content in the fibre. The rate of water transportation between fibre and surrounding depends on the permeability coefficient for PMMA, which is a function of surrounding temperature and humidity. This leads to increased water content with increasing humidity and temperature. Consequently the wavelength of the grating shows a nonlinear change over varying humidity and temperature. This nonlinearity needs to be calibrated prior to sensor application.
Resumo:
We numerically demonstrate for the first time that dispersion management and in-line nonlinear optical loop mirrors can achieve all-optical passive regeneration and distance-unlimited transmission of a soliton data stream at 40 Gbit/s over standard fibre.
Resumo:
A fiber optic free water in fuel (WIF) sensor is proposed by utilizing a long period fiber grating (LPFG). The existence of free water in fuel is indicated by the appearance of a characteristic loss band. The free water level in fuel can be determined by measuring the transmissions of two characteristic loss bands.
Resumo:
The present work addresses the control of the mPOF Bragg grating spectrum properties through acousto-optic modulation. For the first time, the interaction of a flexural acoustic wave, generated by longitudinal excitation of different frequencies, with the Bragg grating will be presented. Also it will be demonstrated the quasi linear relationship between PZT load and maximum reflected power/ 3dB bandwidth of the reflected spectrum.
Resumo:
We present results obtained since recording the first FBGs in microstructured polymer optical fibre (mPOF) and discuss the relative merits of Bragg grating based sensing with polymer optical fibre in general and mPOF in particular. © 2006 OSA/OFS 2006.
Resumo:
A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.
Resumo:
An optical fiber is treated as a natural one-dimensional random system where lasing is possible due to a combination of Rayleigh scattering by refractive index inhomogeneities and distributed amplification through the Raman effect. We present such a random fiber laser that is tunable over a broad wavelength range with uniquely flat output power and high efficiency, which outperforms traditional lasers of the same category. Outstanding characteristics defined by deep underlying physics and the simplicity of the scheme make the demonstrated laser a very attractive light source both for fundamental science and practical applications.
Resumo:
We present an experimental demonstration of energy transfer between counterpropagating cladding modes in a fiber Bragg grating (FBG). A strong FBG written in a standard photosensitive optical fiber is illuminated with a single cladding mode, and the power transferred between the forward propagating cladding mode and different backward propagating cladding modes is measured by using two auxiliary long period gratings. Resonances between cladding modes having 30 pm bandwidth and 8 dB rejection have been observed.
Resumo:
We present the development of superstructure fiber gratings (SFG) in Ge-doped, silica optical fiber using femtosecond laser inscription. We apply a simple but extremely effective single step process to inscribe low loss, sampled gratings with minor polarization dependence. The method results in a controlled modulated index change with complete suppression of mode coupling associated with the overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. The devices are characterized and compared with numerical modeling by solving Maxwell's equations and calculating the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis, allowing for the estimation of inscription parameters such as the ac index modulation change, and the wavelength, position and relative strength of each significant resonance peak. We also present results on temperature and refractive index measurements showing potential for sensing applications.
Resumo:
We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850nm spectral region. For the demonstration we have fabricated FBGs with resonance wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPAS and the conventional poly (methyl methacrylate) (PMMA). Characterization of the FBGs shows that the TOPAS FBG is more than 50 times less sensitive to humidity than the conventional PMMA FBG in both wavelength regimes. This makes the TOPAS FBG very appealing for sensing applications as it appears to solve the humidity sensitivity problem suffered by the PMMA FBG. © 2011 Optical Society of America.
Resumo:
A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.
Resumo:
We demonstrate a liquid level sensor based on the surrounding medium refractive index (SRI) sensing using of an excessively tilted fibre Bragg grating (ETFBG). The sensor has low thermal cross sensitivity and high SRI responsivity.
Resumo:
A 1.2 µm (height) × 125 µm (depth) × 500 µm (length) microslot along a fiber Bragg grating was engraved across the optical fiber by femtosecond laser patterning and chemical etching. By filling epoxy in the slot and subsequent UV curing, a hybrid waveguide grating structure with a polymer core and glass cladding was fabricated. The obtained device is highly thermally responsive with linear coefficient of 211 pm/°C.
Resumo:
A high frequency sensing interrogation system by using fiber Bragg grating based microwave photonic filtering is proposed, in which the wavelength measurement sensitivity is proportional to the RF modulation frequency applied to the optical signal.