994 resultados para Oligonucleotide primers
Resumo:
In the present study. MRNA for the cytokines interleukin-2 (IL-2), IL-4, IL-10 tumour necrosis factor-alpha (TNF-alpha) and transforming growth factor beta-1 (TGF-beta-1) were investigated in oral lichen planus (OLP) lesions using in situ hybridization with S-35-labelled oligonucleotide probes on frozen tissue sections. In addition, the expression of interferon-gamma (IFN-gamma), IL-10 and IL-4 mRNAs was analysed in cultured lesional T lymphocytes from oral lichen planus by polymerase chain reaction. Cells expressing mRNA for IL-2, IL-4, IL-10, TNF-alpha and TGF-beta(1) were found in all the biopsies studied. Approximately 1-2% of the total number of infiltrating cells in the lesions were positive for each of the different cytokine mRNAs. Most biopsies contained basement membrane-oriented, mRNA-positive cells. In the cultured T-cell lines, message for IFN-gamma was detected in all the patients, IL-10 in all but one, and IL-4 in just one of the seven patients investigated. The results suggest that mRNA for both pro- and anti-inflammatory cytokines, i.e., mixed T-helper 1 (T(H)1) and T(H)2 cytokine profiles, are generated simultaneously by a limited number of cells in chronic lesions of OLP. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Phytophthora cinnamomi isolates from South Africa and Australia were compared to assess genetic differentiation between the two populations. These two populations were analysed for levels of phenotypic diversity using random amplified polymorphic DNAs (RAPDs) and gene and genotypic diversity using restriction fragment length polymorphisms (RFLPs). Sixteen RAPD markers from four decanucleotide Operon primers and 34 RFLP alleles from 15 putative loci were used. A few isolates from Papua New Guinea known to posses alleles different from Australian isolates were also included for comparative purposes. South African and Australian P. cinnamomi populations were almost identical with an extremely low level of genetic distance between them (D-m = 0.003). Common features for the two populations include shared alleles, low levels of phenotypic/genotypic diversity, high clonality, and low observed and expected levels of heterozygosity. Furthermore, relatively high levels of genetic differentiation between mating type populations (D-m South Africa = 0.020 and D-m Australia = 0.025 respectively), negative fixation indices, and significant deviations from Hardy-Weinberg equilibrium, all provided evidence for the lack of frequent sexual reproduction in both populations. The data strongly suggest that both the South African and Australian P. cinnamomi populations are introduced.
Resumo:
Cylindrospermopsis raciborskii is a toxic-bloom-forming cyanobacterium that is commonly found in tropical to subtropical climatic regions worldwide, but it is also recognized as a common component of cyanobacterial communities in temperate climates. Genetic profiles of C. raciborskii were examined in 19 cultured isolates originating from geographically diverse regions of Australia and represented by two distinct morphotypes. A 609-bp region of rpoC1, a DNA-dependent RNA polymerase gene, was amplified by PCR from these isolates with cyanobacterium-specific primers. Sequence analysis revealed that all isolates belonged to the same species, including morphotypes with straight or coiled trichomes. Additional rpoC1 gene sequences obtained for a range of cyanobacteria highlighted clustering of C. raciborskii with other heterocyst-producing cyanobacteria (orders Nostocales and Stigonematales). In contrast, randomly amplified polymorphic DNA and short tandemly repeated repetitive sequence profiles revealed a greater level of genetic heterogeneity among C. raciborskii isolates than did rpoC1 gene analysis, and unique band profiles were also found among each of the cyanobacterial genera examined. A PCR test targeting a region of the rpoC1 gene unique to C. raciborskii was developed for the specific identification of C. raciborskii from both purified genomic DNA and environmental samples. The PCR was evaluated with a number of cyanobacterial isolates, but a PCR-positive result was only achieved with C, raciborskii. This method provides an accurate alternative to traditional morphological identification of C. raciborskii.
Resumo:
Cylindrospermopsis raciborskii is a bloom-forming cyanobacterium found in both tropical and temperate climates which produces cylindrospermopsin, a potent hepatotoxic secondary metabolite. This organism is notorious for its association with a significant human poisoning incident on Palm Island, Australia, which resulted in the hospitalization of 148 people. We have screened 13 C. raciborskii isolates from various regions of Australia and shown that both toxic and nontoxic strains exist within this species. No association was observed between geographical origin and toxin production. Polyketide synthases (PKSs) and peptide synthetases (PSs) are enzymes involved in secondary metabolite biosynthesis in cyanobacteria. Putative PKS and PS genes from C. raciborskii strains AWT205 and CYPO2OB were identified by PCR using degenerate primers based on conserved regions within each gene. Examination of the strain-specific distribution of the PKS and PS genes in C. raciborskii isolates demonstrated a direct link between the presence of these two genes and the ability to produce cylindrospermopsin. Interestingly, the possession of these two genes was also linked. They were also identified in an Anabaena bergii isolate that was demonstrated to produce cylindrospermopsin. Taken together, these data suggest a likely role for these determinants in secondary metabolite and toxin production by C. raciborskii. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The number of repeats in repetitive DNA like micro- and minisatellites is often determined by polymerase chain reaction (PCR). When we counted repeats in an array of mitochondrial repeats in the cattle tick (Boophilus microplus) we found that the number of repeats increased during PCR. Multiplication of the repeats was independent of the primers used to amplify the region, the PCR annealing temperature and the length of the PCR product. The use of PCR to determine the number of repeats in arrays needs to be reassessed. For long repeats, a subset of samples should always be analysed by Southern blot hybridization to confirm the PCR results.
Resumo:
in Escherichia coli, the DnaG primase is the RNA polymerase that synthesizes RNA primers at replication forks. It is composed of three domains, a small N-terminal zinc-binding domain, a larger central domain responsible for RNA synthesis, and a C-terminal domain comprising residues 434-581 [DnaG(434-581)] that interact with the hexameric DnaB helicase. Presumably because of this interaction, it had not been possible previously to express the C-terminal domain in a stably transformed E coli strain. This problem was overcome by expression of DnaG(434-581) under control of tandem bacteriophage gimel-promoters, and the protein was purified in yields of 4-6 mg/L of culture and studied by NMR. A TOCSY spectrum of a 2 mM solution of the protein at pH 7.0, indicated that its structured core comprises residues 444-579. This was consistent with sequence conservation among most-closely related primases. Linewidths in a NOESY spectrum of a 0.5 mM sample in 10 mM phosphate, pH 6.05, 0.1 M NaCl, recorded at 36 degreesC, indicated the protein to be monomeric. Crystals of selenomethionine-substituted DnaG(434-581) obtained by the hanging-drop vapor-diffusion method were body-centered tetragonal, space group I4(1)22, with unit cell parameters a = b 142.2 Angstrom, c = 192.1 Angstrom, and diffracted beyond 2.7 Angstrom resolution with synchrotron radiation. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Cyanobacterial strains isolated from terrestrial and freshwater habitats in Brazil were evaluated for their antimicrobial and siderophore activities. Metabolites of fifty isolates were extracted from the supernatant culture media and cells using ethyl acetate and methanol, respectively. The extracts of 24 isolates showed antimicrobial activity against several pathogenic bacteria and one yeast. These active extracts were characterized by Q-TOF/MS. The cyanobacterial strains Cylindrospermopsis raciborskii 339-T3, Synechococcus elongatus PCC7942, Microcystis aeruginosa NPCD-1, M. panniformis SCP702 and Fischerella sp. CENA19 provided the most active extracts. The 50 cyanobacterial strains were also screened for the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes and microcystin production. Putative fragment genes coding for NRPS adenylation domains and PKS keto-synthase domains were successfully PCR amplified from 92% and 80% of cyanobacterial strains, respectively. The potential therapeutical compounds siderophores were detected in five cyanobacterial isolates. Microcystin production was detected by ELISA test in 26% of the isolates. Further a protease inhibitor substance was detected by LC-MS/MS in the M. aeruginosa NPLJ-4 extract and the presence of aeruginosin and cyanopeptolin was confirmed by PCR amplification using specific primers, and sequenced. This screening study showed that Brazilian cyanobacterial isolates are a rich source of natural products with potential for pharmacological and biotechnological applications. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Several published studies claim that high rates of N-2 fixation occur in sugarcane and sorghum, and have ascribed this result to infection by the bacterium Gluconacetobacter diazotrophicus, abetted by arbuscular mycorrhizal infection ( Glomus clarum). These results have not been confirmed within Australia. In this study, G. diazotrophicus was detected in stalks of field-grown sugarcane in Australia ( based on phenotypic tests, and a PCR test using species-specific primers developed to amplify a fragment of the G. diazotrophicus 16S rRNA gene). Isolates were nitrogenase positive ( acetylene reduction assay) in vitro. However, in glasshouse trials involving inoculation of sugarcane setts with G. diazotrophicus, co-inoculation with mycorrhizae, and plant growth under low N status, recovery of bacteria from maturing plants was variable. At 165 days from planting, no appreciable N-2-fixation, as assessed by dry weight increment, N budget, or N-15 ratio, of either an Australian or a Brazilian cultivar of sugarcane, or a sorghum cultivar, was achieved. We conclude that a N-2-fixing sugarcane - G. diazotrophicus association is not easily achievable, being primarily limited by a lack of infection.
Resumo:
Context: Although numerous reports of mutations in GH1 and GHRHR (GHRH receptor) causing isolated GH deficiency (IGHD) have been published, mutations in GHRH itself have not been hitherto reported but are obvious candidates for GH deficiency. Objective: The aim of this study was to identify mutations in GHRH in a large cohort of patients with IGHD. Patients and Methods: DNA was isolated from 151 patients diagnosed with IGHD at national and international centers. Seventy-two patients fulfilled all the following criteria: severe short stature (height SD score <= -2.5), low peakGHafter stimulation (peak <= 5 ng/ml), eutopic posterior pituitary lobe, and absence of mutations in GH1 and GHRHR and therefore were strong candidates for GHRH mutations. The coding sequence and splice sites of GHRH were amplified by PCR with intronic primers and sequenced. Results: In five of 151 patients (four of 42 from Brazil), the GHRH c. 223 C>T, p. L75F change was identified in heterozygosity. This variant has been previously reported as a polymorphism and is more frequent in African than European and Asian populations. Six allelic variants (five novel) that do not predict change of amino acids or splice sites were identified in five patients: c. 147 C>T, p.S49S, IVS1 -70 G>A, IVS1 -74 T>C, IVS3 -47 del1, and IVS3 +7 G>A/IVS3 + 41 G>A. No functional mutations were found in this cohort. Conclusions: GHRH mutations were not identified in a selected cohort of patients with IGHD, suggesting that, if they exist, they may be an extremely rare cause of IGHD. Other, as-yet-unidentified genetic factors may be implicated in the genetic etiology of IGHD in our cohort. (J Clin Endocrinol Metab 96: E1457-E1460, 2011)
Resumo:
Context: GLI2 is a transcription factor downstream in Sonic Hedgehog signaling, acting early in ventral forebrain and pituitary development. GLI2 mutations were reported in patients with holoprosencephaly (HPE) and pituitary abnormalities. Objective: The aim was to report three novel frameshift/nonsense GLI2 mutations and the phenotypic variability in the three families. Setting: The study was conducted at a university hospital. Patients and Methods: The GLI2 coding region of patients with isolated GH deficiency (IGHD) or combined pituitary hormone deficiency was amplified by PCR using intronic primers and sequenced. Results: Three novel heterozygous GLI2 mutations were identified: c. 2362_2368del p. L788fsX794 (family 1), c. 2081_2084del p. L694fsX722 (family 2), and c. 1138 G > T p. E380X (family 3). All predict a truncated protein with loss of the C-terminal activator domain. The index case of family 1 had polydactyly, hypoglycemia, and seizures, and GH, TSH, prolactin, ACTH, LH, and FSH deficiencies. Her mother and seven relatives harboring the same mutation had polydactyly, including two uncles with IGHD and one cousin with GH, TSH, LH, and FSH deficiencies. In family 2, a boy had cryptorchidism, cleft lip and palate, and GH deficiency. In family 3, a girl had hypoglycemia, seizures, excessive thirst and polyuria, and GH, ACTH, TSH, and antidiuretic hormone deficiencies. Magnetic resonance imaging of four patients with GLI2 mutations and hypopituitarism showed a hypoplastic anterior pituitary and an ectopic posterior pituitary lobe without HPE. Conclusion: We describe three novel heterozygous frameshift or nonsense GLI2 mutations, predicting truncated proteins lacking the activator domain, associated with IGHD or combined pituitary hormone deficiency and ectopic posterior pituitary lobe without HPE. These phenotypes support partial penetrance, variable polydactyly, midline facial defects, and pituitary hormone deficiencies, including diabetes insipidus, conferred by heterozygous frameshift or nonsense GLI2 mutations. (J Clin Endocrinol Metab 95: E384-E391, 2010)
Resumo:
P>Context Congenital generalized lipodystrophy, or Berardinelli-Seip syndrome, is a rare autosomal recessive disease caused by mutations in either the BSCL2 or AGPAT2 genes. This syndrome is characterized by an almost complete loss of adipose tissue usually diagnosed at birth or early infancy resulting in apparent muscle hypertrophy. Common clinical features are acanthosis nigricans, hepatomegaly with or without splenomegaly and high stature. Acromegaloid features, cardiomyopathy and mental retardation can also be present. Design We investigated 11 kindreds from different geographical areas of Brazil (northeast and southeast). All coding regions as well as flanking intronic regions of both genes were examined. Polymerase chain reaction (PCR) amplifications were performed using primers described previously and PCR products were sequenced directly. Results Four AGPAT2 and two BSCL2 families harboured the same set of mutations. BSCL2 gene mutations were found in the homozygous form in four kindreds (c.412C > T c.464T > C, c.518-519insA, IVS5-2A > G), and in two kindreds compound mutations were found (c.1363C > T, c.424A > G). In the other four families, one mutation of the AGPAT2 gene was found (IVS3-1G > C and c.299G > A). Conclusions We have demonstrated four novel mutations of the BSCL2 and AGPAT2 genes responsible for Berardinelli-Seip syndrome and Brunzell syndrome (AGPAT2-related syndrome).
Resumo:
Objective. Circumstantial evidence links retroviruses (RVs) with human autoimmune diseases, The aim of the present study was to obtain direct evidence of RV gene expression in rheumatoid arthritis (RA). Methods. Synovial samples were obtained from patients with RA, patients with osteoarthritis (OA), and normal control subjects, Reverse transcription-polymerase chain reaction (RT-PCR) was performed using synovial RNA and primers to conserved sequences in the polymerase (pol) genes of known RVs. Results. PCR products (n = 857) were cloned and sequenced, Multiple pol transcripts, many with open reading frames, were expressed in every sample, Sequences were aligned and classified into 6 families (F1-F6) that contained 33 groups of known and unknown endogenous RVs (ERVs), each distinguished by a specific, deduced peptide motif, The frequency of sequences in each family was similar between RA, OA, and normal synovial tissue, but differed significantly in RA synovial fluid cells, F1 sequences (undefined, but related to murine and primate type C RVs) were lower in frequency, F2 (ERV-9-related), F4 (HERV-K-related), and F6 (HERV-L-related) sequences were higher in frequency, and F3 (RTVL-H-related) sequences were not detected, in the RA synovial fluid cells compared with the RA synovial tissues. Conclusion. Multiple ERVs are expressed in normal and diseased synovial compartments, but specific transcripts can be differentially expressed in RA.
Resumo:
Aims: To evaluate the IL1RN polymorphism as a possible marker for Rheumatic Fever (RF) susceptibility or disease severity. Methods: The genotypes of 84 RF patients (Jones criteria) and 84 normal race-matched controls were determined through the analysis of the number of 86-bp tandem repeats in the second intron of IL1RN. The DNA was extracted from peripheral-blood leukocytes and amplified with specific primers. Clinical manifestations of RF were obtained through a standardized questionnaire and an extensive chart review. Carditis was defined as new onset cardiac murmur that was perceived by a trained physician with corresponding valvae regurgitation or stenosis on echocardiogram. Carditis was classified as severe in the presence of congestive heart failure or upon the indication for cardiac surgery. The statistical association among the genotypes, RF and its clinical variations was determined. Results: The presence of allele I and the genotype A1/A1 were found less frequently among patients with severe carditis when compared to patients without this manifestation (OR = 0.11, p = 0.031; OR = 0.092, p = 0.017). Neither allele I nor allele 2 were associated with the presence of RF (p = 0.188 and p = 0.106), overall carditis (p = 0.578 and p = 0.767), polyarthritis (p = 0.343 and p = 0.313) and chorea (p = 0.654 and p = 0.633). Conclusion: In the Brazilian population, the polymorphism of the IL-1ra gene is a relevant factor for rheumatic heart disease severity. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Microsatellites or simple sequence repeats (SSRs) are ubiquitous in eukaryotic genomes. Single-locus SSR markers have been developed for a number of species, although there is a major bottleneck in developing SSR markers whereby flanking sequences must be known to design 5'-anchors for polymerase chain reaction (PCR) primers. Inter SSR (ISSR) fingerprinting was developed such that no sequence knowledge was required. Primers based on a repeat sequence, such as (CA)(n), can be made with a degenerate 3'-anchor, such as (CA)(8)RG or (AGC)(6)TY. The resultant PCR reaction amplifies the sequence between two SSRs, yielding a multilocus marker system useful for fingerprinting, diversity analysis and genome mapping. PCR products are radiolabelled with P-32 or P-33 via end-labelling or PCR incorporation, and separated on a polyacrylamide sequencing gel prior to autoradiographic visualisation. A typical reaction yields 20-100 bands per lane depending on the species and primer. We have used ISSR fingerprinting in a number of plant species, and report here some results on two important tropical species, sorghum and banana. Previous investigators have demonstrated that ISSR analysis usually detects a higher level of polymorphism than that detected with restriction fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD) analyses. Our data indicate that this is not a result of greater polymorphism genetically, but rather technical reasons related to the detection methodology used for ISSR analysis.
Resumo:
Helicobacter pylori infection is very prevalent in Brazil, infecting almost 65% of the population. The aim of this study was to evaluate the presence of this bacterium in the oral cavity of patients with functional dyspepsia (epigastric pain syndrome), establish the main sites of infection in the mouth, and assess the frequency of cagA and vacA genotypes of oral H. pylori. All 43 outpatients with epigastric pain syndrome, who entered the study, were submitted to upper gastrointestinal endoscopy to rule out organic diseases. Helicobacter pylori infection in the stomach was confirmed by a rapid urease test and urea breath tests. Samples of saliva, the tongue dorsum and supragingival dental plaque were collected from the oral cavity of each subject and subgingival dental plaque samples were collected from the patients with periodontitis; H. pylori infection was verified by polymerase chain reaction using primers that amplify the DNA sequence of a species-specific antigen present in all H. pylori strains; primers that amplify a region of urease gene, and primers for cagA and vacA (m1, m2, s1a, s1b, s2) genotyping. Thirty patients harbored H. pylori in the stomach, but it was not possible to detect H. pylori in any oral samples using P1/P2 and Urease A/B. The genotype cagA was also negative in all samples and vacA genotype could not be characterized (s-m-). The oral cavity may not be a reservoir for H. pylori in patients with epigastric pain syndrome, the bacterium being detected exclusively in the stomach.