985 resultados para Olfactory Epithelium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specification of pattern is fundamental to the development of a multicellular organism. The Malpighian (renal) tubule of Drosophila melanogaster is a simple epithelium that proliferates under the direction of a single tip cell into three morphologically distinct domains. However, systematic analysis of a panel of over 700 P{GAL4} enhancer trap lines reveals unexpected richness for such an apparently simple tissue. Using numerical analysis, it was possible formally to reconcile apparently similar or complementary expression domains and thus to define at least five genetically defined domains and multiple cell types. Remarkably, the positions of domain boundaries and the numbers of both principal and secondary (“stellate”) cell types within each domain are reproducible to near single-cell precision between individual animals. Domains of physiological function were also mapped using transport or expression assays. Invariably, they respect the boundaries defined by enhancer activity. These genetic domains can also be visualized in vivo, both in transgenic and wild-type flies, providing an “identified cell” system for epithelial physiology. Building upon recent advances in Drosophila Malpighian tubule physiology, the present study confirms this tissue as a singular model for integrative physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to identify nuclear receptors important in retinal disease, we screened a retina cDNA library for nuclear receptors. Here we describe the identification of a retina-specific nuclear receptor (RNR) from both human and mouse. Human RNR is a splice variant of the recently published photoreceptor cell-specific nuclear receptor [Kobayashi, M., Takezawa, S., Hara, K., Yu, R. T., Umesono, Y., Agata, K., Taniwaki, M., Yasuda, K. & Umesono, K. (1999) Proc. Natl. Acad. Sci. USA 96, 4814–4819] whereas the mouse RNR is a mouse ortholog. Northern blot and reverse transcription–PCR analyses of human mRNA samples demonstrate that RNR is expressed exclusively in the retina, with transcripts of ≈7.5 kb, ≈3.0 kb, and ≈2.3 kb by Northern blot analysis. In situ hybridization with multiple probes on both primate and mouse eye sections demonstrates that RNR is expressed in the retinal pigment epithelium and in Müller glial cells. By using the Gal4 chimeric receptor/reporter cotransfection system, the ligand binding domain of RNR was found to repress transcriptional activity in the absence of exogenous ligand. Gel mobility shift assays revealed that RNR can interact with the promoter of the cellular retinaldehyde binding protein gene in the presence of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR). These data raise the possibility that RNR acts to regulate the visual cycle through its interaction with cellular retinaldehyde binding protein and therefore may be a target for retinal diseases such as retinitis pigmentosa and age-related macular degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient expression of therapeutic genes in target cells or tissues is an important component of efficient and safe gene therapy. Utilizing regulatory elements from the human cytokeratin 18 (K18) gene, including 5′ genomic sequences and one of its introns, we have developed a novel expression cassette that can efficiently express reporter genes, as well as the human cystic fibrosis transmembrane conductance regulator (CFTR) gene, in cultured lung epithelial cells. CFTR transcripts expressed from the native K18 enhancer/promoter include two alternative splicing products, due to the activation of two cryptic splice sites in the CFTR coding region. Modification of the K18 intron and CFTR cDNA sequences eliminated the cryptic splice sites without changing the CFTR amino acid sequence, and led to enhanced CFTR mRNA and protein expression as well as biological function. Transgenic expression analysis in mice showed that the modified expression cassette can direct efficient and epithelium-specific expression of the Escherichia coli LacZ gene in the airways of fetal lungs, with no detectable expression in lung fibroblasts or endothelial cells. This is the first expression cassette which selectively directs lung transgene expression for CFTR gene therapy to airway epithelia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In adult rodents, neurons are continually generated in the subventricular zone of the forebrain, from where they migrate tangentially toward the olfactory bulb, the only known target for these neuronal precursors. Within the main olfactory bulb, they ascend radially into the granule and periglomerular cell layers, where they differentiate mainly into local interneurons. The functional consequences of this permanent generation and integration of new neurons into existing circuits are unknown. To address this question, we used neural cell adhesion molecule-deficient mice that have documented deficits in the migration of olfactory-bulb neuron precursors, leading to about 40% size reduction of this structure. Our anatomical study reveals that this reduction is restricted to the granule cell layer, a structure that contains exclusively γ-aminobutyric acid (GABA)ergic interneurons. Furthermore, mutant mice were subjected to experiments designed to examine the behavioral consequences of such anatomical alteration. We found that the specific reduction in the newly generated interneuron population resulted in an impairment of discrimination between odors. In contrast, both the detection thresholds for odors and short-term olfactory memory were unaltered, demonstrating that a critical number of bulbar granule cells is crucial only for odor discrimination but not for general olfactory functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The γ-aminobutyric acid type A (GABAA) receptor is the predominant Cl− channel protein mediating inhibition in the olfactory bulb and elsewhere in the mammalian brain. The olfactory bulb is rich in neurons containing both GABA and dopamine. Dopamine D1 and D2 receptors are also highly expressed in this brain region with a distinct and complementary distribution pattern. This distribution suggests that dopamine may control the GABAergic inhibitory processing of odor signals, possibly via different signal-transduction mechanisms. We have observed that GABAA receptors in the rat olfactory bulb are differentially modulated by dopamine in a cell-specific manner. Dopamine reduced the currents through GABA-gated Cl- channels in the interneurons, presumably granule cells. This action was mediated via D1 receptors and involved phosphorylation of GABAA receptors by protein kinase A. Enhancement of GABA responses via activation of D2 dopamine receptors and phosphorylation of GABAA receptors by protein kinase C was observed in mitral/tufted cells. Decreasing or increasing the binding affinity for GABA appears to underlie the modulatory effects of dopamine via distinct receptor subtypes. This dual action of dopamine on inhibitory GABAA receptor function in the rat olfactory bulb could be instrumental in odor detection and discrimination, olfactory learning, and ultimately odotopic memory formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovarian carcinomas are thought to arise in the ovarian surface epithelium (OSE). Although this tissue forms a simple epithelial covering on the ovarian surface, OSE cells exhibit some mesenchymal characteristics and contain little or no E-cadherin. However, E-cadherin is present in metaplastic OSE cells that resemble the more complex epithelia of the oviduct, endometrium and endocervix, and in primary epithelial ovarian carcinomas. To determine whether E-cadherin was a cause or consequence of OSE metaplasia, we expressed this cell-adhesion molecule in simian virus 40-immortalized OSE cells. In these cells the exogenous E-cadherin, all three catenins, and F-actin localized at sites of cell–cell contact, indicating the formation of functional adherens junctions. Unlike the parent OSE cell line, which had undergone a typical mesenchymal transformation in culture, E-cadherin-expressing cells contained cytokeratins and the tight-junction protein occludin. They also formed cobblestone monolayers in two-dimensional culture and simple epithelia in three-dimensional culture that produced CA125 and shed it into the culture medium. CA125 is a normal epithelial-differentiation product of the oviduct, endometrium, and endocervix, but not of normal OSE. It is also a tumor antigen that is produced by ovarian neoplasms and by metaplastic OSE. Thus, E-cadherin restored some normal characteristics of OSE, such as keratin, and it also induced epithelial-differentiation markers associated with weakly preneoplastic, metaplastic OSE and OSE-derived primary carcinomas. The results suggest an unexpected role for E-cadherin in ovarian neoplastic progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic blood oxygenation level-dependent functional MRI was applied at 7 T in the rat olfactory bulb (OB) with pulsed delivery of iso-amyl acetate (IAA) and limonene. Acquisition times for single-slice and whole OB data were 8 and 32 s, respectively, with spatial resolution of 220 × 220 × 250 μm. On an intrasubject basis, short IAA exposures of 0.6 min separated by 3.5-min intervals induced reproducible spatial activity patterns (SAPs) in the olfactory nerve layer, glomerular layer, and external plexiform layer. During long exposures (≈10 min), the initially dominant dorsal SAPs declined in intensity and area, whereas in some OB regions, the initially weak ventral/lateral SAPs increased first and then decreased. The SAPs of different concentrations were topologically similar, which implies that whereas an odor at various concentrations activates the same subsets of receptor cells, different concentrations are assessed and discriminated by variable magnitudes of laminarspecific activations. IAA and limonene reproducibly activated different subsets of receptor cells with some overlaps. Whereas qualitative topographical agreement was observed with results from other methods, the current dynamic blood oxygenation level-dependent functional MRI results can provide quantitative SAPs of the entire OB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevailing paradigm for G protein-coupled receptors is that each receptor is narrowly tuned to its ligand and closely related agonists. An outstanding problem is whether this paradigm applies to olfactory receptor (ORs), which is the largest gene family in the genome, in which each of 1,000 different G protein-coupled receptors is believed to interact with a range of different odor molecules from the many thousands that comprise “odor space.” Insights into how these interactions occur are essential for understanding the sense of smell. Key questions are: (i) Is there a binding pocket? (ii) Which amino acid residues in the binding pocket contribute to peak affinities? (iii) How do affinities change with changes in agonist structure? To approach these questions, we have combined single-cell PCR results [Malnic, B., Hirono, J., Sato, T. & Buck, L. B. (1999) Cell 96, 713–723] and well-established molecular dynamics methods to model the structure of a specific OR (OR S25) and its interactions with 24 odor compounds. This receptor structure not only points to a likely odor-binding site but also independently predicts the two compounds that experimentally best activate OR S25. The results provide a mechanistic model for olfactory transduction at the molecular level and show how the basic G protein-coupled receptor template is adapted for encoding the enormous odor space. This combined approach can significantly enhance the identification of ligands for the many members of the OR family and also may shed light on other protein families that exhibit broad specificities, such as chemokine receptors and P450 oxidases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it has been known for decades that the tight junctions of fluid-transporting epithelia are leaky to ions, it has not been possible to determine directly whether significant transjunctional water movement also occurs. An optical microscopic technique was developed for the direct visualization of the flow velocity profiles within the lateral intercellular spaces of a fluid-absorptive, cultured renal epithelium (MDCK) and used to determine the velocity of the fluid flow across the tight junction. The flow velocity within the lateral intercellular spaces fell to near zero adjacent to the tight junction, showing that significant transjunctional flow did not occur, even when transepithelial fluid movement was augmented by imposition of osmotic gradients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant blood vessel growth in the retina that underlies the pathology of proliferative diabetic retinopathy and retinopathy of prematurity is the result of the ischemia-driven disruption of the normally antiangiogenic environment of the retina. In this study, we show that a potent inhibitor of angiogenesis found naturally in the normal eye, pigment epithelium-derived growth factor (PEDF), inhibits such aberrant blood vessel growth in a murine model of ischemia-induced retinopathy. Inhibition was proportional to dose and systemic delivery of recombinant protein at daily doses as low as 2.2 mg/kg could prevent aberrant endothelial cells from crossing the inner limiting membrane. PEDF appeared to inhibit angiogenesis by causing apoptosis of activated endothelial cells, because it induced apoptosis in cultured endothelial cells and an 8-fold increase in apoptotic endothelial cells could be detected in situ when the ischemic retinas of PEDF-treated animals were compared with vehicle-treated controls. The ability of low doses of PEDF to curtail aberrant growth of ocular endothelial cells without overt harm to retinal morphology suggests that this natural protein may be beneficial in the treatment of a variety of retinal vasculopathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the presence of an olfactory impairment in Parkinson's disease (PD) has been recognized for 25 years, its cause remains unclear. Here we suggest a contributing factor to this impairment, namely, that PD impairs active sniffing of odorants. We tested 10 men and 10 women with clinically typical PD, and 20 age- and gender-matched healthy controls, in four olfactory tasks: (i) the University of Pennsylvania smell identification test; (ii and iii) detection threshold tests for the odorants vanillin and propionic acid; and (iv) a two-alternative forced-choice detection paradigm during which sniff parameters (airflow peak rate, mean rate, volume, and duration) were recorded with a pneomatotachograph-coupled spirometer. An additional experiment tested the effect of intentionally increasing sniff vigor on olfactory performance in 20 additional patients. PD patients were significantly impaired in olfactory identification (P < 0.0001) and detection (P < 0.007). As predicted, PD patients were also significantly impaired at sniffing, demonstrating significantly reduced sniff airflow rate (P < 0.01) and volume (P < 0.002). Furthermore, a patient's ability to sniff predicted his or her performance on olfactory tasks, i.e., the more poorly patients sniffed, the worse their performance on olfaction tests (P < 0.009). Finally, increasing sniff vigor improved olfactory performance in those patients whose baseline performance had been poorest (P < 0.05). These findings implicate a sniffing impairment as a component of the olfactory impairment in PD and further depict sniffing as an important component of human olfaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In adult rodents, neural progenitor cells in the subependymal (SZ) zone of the lateral cerebral ventricle generate neuroblasts that migrate in chains via the rostral migratory stream (RMS) into the olfactory bulb (OB), where they differentiate into interneurons. However, the existence of this neurogenic migratory system in other mammals has remained unknown. Here, we report the presence of a homologue of the rodent SZ/RMS in the adult macaque monkey, a nonhuman Old World primate with a relatively smaller OB. Our results—obtained by using combined immunohistochemical detection of a marker for DNA replication (5-bromodeoxyuridine) and several cell type-specific markers—indicate that dividing cells in the adult monkey SZ generate neuroblasts that undergo restricted chain migration over an extended distance of more than 2 cm to the OB and differentiate into granule interneurons. These findings in a nonhuman primate extend and support the use of the SZ/RMS as a model system for studying neural regenerative mechanisms in the human brain.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal synchronization in the olfactory bulb has been proposed to arise from a diffuse action of glutamate released from mitral cells (MC, olfactory bulb relay neurons). According to this hypothesis, glutamate spills over from dendrodendritic synapses formed between MC and granule cells (GC, olfactory bulb interneurons) to activate neighboring MC. The excitation of MC is balanced by a strong inhibition from GC. Here we show that MC excitation is caused by glutamate released from bulbar interneurons located in the GC layer. These reciprocal synapses depend on an unusual, 2-amino-5-phosphonovaleric acid-resistant, N-methyl-d-aspartate receptor. This type of feedback excitation onto relay neurons may strengthen the original sensory input signal and further extend the function of the dendritic microcircuit within the main olfactory bulb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence emerging from several laboratories, integrated with new data obtained by searching the genome databases, suggests that the area code hypothesis provides a good heuristic model for explaining the remarkable specificity of cell migration and tissue assembly that occurs throughout embryogenesis. The area code hypothesis proposes that cells assemble organisms, including their brains and nervous systems, with the aid of a molecular-addressing code that functions much like the country, area, regional, and local portions of the telephone dialing system. The complexity of the information required to code cells for the construction of entire organisms is so enormous that we assume that the code must make combinatorial use of members of large multigene families. Such a system would reuse the same receptors as molecular digits in various regions of the embryo, thus greatly reducing the total number of genes required. We present the hypothesis that members of the very large families of olfactory receptors and vomeronasal receptors fulfill the criteria proposed for area code molecules and could serve as the last digits in such a code. We discuss our evidence indicating that receptors of these families are expressed in many parts of developing embryos and suggest that they play a key functional role in cell recognition and targeting not only in the olfactory system but also throughout the brain and numerous other organs as they are assembled.