996 resultados para O and H antigens
Resumo:
Bovine respiratory syncytial virus (BRSV) has been only sporadically identified as a causative agent of respiratory disease in Brazil. This contrasts with frequent reports of clinical and histopathological findings suggestive of BRSV-associated disease. In order to examine a possible involvement of BRSV in cases of calf pneumonia, a retrospective search was performed for BRSV antigens in histological specimens submitted to veterinary diagnostic services from the states of Rio Grande do Sul and Minas Gerais. Ten out of 41 cases examined (24.4%) were positive for BRSV antigens by immunohistochemistry (IPX). Eight of these cases (19.5%) were also positive by indirect immunofluorescence (IFA), and 31 cases (75.6%) were negative in both assays. In the lungs, BRSV antigens were predominantly observed in epithelial cells of bronchioles and less frequently found in alveoli. In one case, antigens were detected only in the epithelium of the alveolar septae. The presence of antigen-positive cells was largely restricted to epithelial cells of these airways. In two cases, positive staining was also observed in cells and cellular debris in the exudate within the pulmonary airways. The clinical cases positive for BRSV antigens were observed mainly in young animals (2 to 12 month-old) from dairy herds. The main microscopic changes included bronchointerstitial pneumonia characterized by thickening of alveolar septae adjacent to airways by mononuclear cell infiltrates, and the presence of alveolar syncytial giant cells. In summary, the results demonstrate the suitability of the immunodetection of viral antigens in routinely fixed tissue specimens as a diagnostic tool for BRSV infection. Moreover, the findings provide further evidence of the importance of BRSV as a respiratory pathogen of young cattle in southeastern and southern Brazil.
Resumo:
Plants present a cost effective production system for high value proteins. There is an increasing world demand for cheap vaccines that can be readily administered to the population, especially in economically less developed regions. A promising concept is the production of vaccines in plants that could be grown locally. Expression of antigenic peptides in the palatable parts of plants can lead to the production of edible active vaccines. Two major strategies are: i) to express antigens in transgenic plants, and ii) to produce antigenic peptides on the surface of plant viruses that could be used to infect host plants. This review considers the experimental data and early results for both strategies, and discusses the potential and problems of this new technology
Resumo:
Specific glycosphingolipid antigens of Leishmania (L.) amazonensis amastigotes reactive with the monoclonal antibodies (MoAbs) ST-3, ST-4 and ST-5 were isolated, and their structure was partially elucidated by negative ion fast atom bombardment mass spectrometry. The glycan moieties of five antigens presented linear sequences of hexoses and N-acetylhexosamines ranging from four to six sugar residues, and the ceramide moieties were found to be composed by a sphingosine d18:1 and fatty acids 24:1 or 16:0. Affinities of the three monoclonal antibodies to amastigote glycosphingolipid antigens were also analyzed by ELISA. MoAb ST-3 reacted equally well with all glycosphingolipid antigens tested, whereas ST-4 and ST-5 presented higher affinities to glycosphingolipids with longer carbohydrate chains, with five or more sugar units (slow migrating bands on HPTLC). Macrophages isolated from footpad lesions of BALB/c mice infected with Leishmania (L.) amazonensis were incubated with MoAb ST-3 and, by indirect immunofluorescence, labeling was only detected on the parasite, whereas no fluorescence was observed on the surface of the infected macrophages, indicating that these glycosphingolipid antigens are not acquired from the host cell but synthesized by the amastigote. Intravenous administration of 125I-labeled ST-3 antibody to infected BALB/c mice showed that MoAb ST-3 accumulated significantly in the footpad lesions in comparison to blood and other tissues
Resumo:
It has been shown that HLA class I molecules play a significant role in the regulation of the proliferation of T cells activated by mitogens and antigens. We evaluated the ability of mAb to a framework determinant of HLA class I molecules to regulate T cell proliferation and interferon gamma (IFN-
Resumo:
We report the detection of insulin-like antigens in a large range of species utilizing a modified ELISA plate assay and Western blotting. We tested the leaves or aerial parts of species of Rhodophyta (red alga), Bryophyta (mosses), Psilophyta (whisk ferns), Lycopodophyta (club mosses), Sphenopsida (horsetails), gymnosperms, and angiosperms, including monocots and dicots. We also studied species of fungi and a cyanobacterium, Spirulina maxima. The wide distribution of insulin-like antigens, which in some cases present the same electrophoretic mobility as bovine insulin, together with results recently published by us on the amino acid sequence of an insulin isolated from the seed coat of jack bean (Canavalia ensiformis) and from the developing fruits of cowpea (Vigna unguiculata), suggests that pathways depending on this hormone have been conserved through evolution.
Resumo:
The hemochromatosis gene, HFE, is located on chromosome 6 in close proximity to the HLA-A locus. Most Caucasian patients with hereditary hemochromatosis (HH) are homozygous for HLA-A3 and for the C282Y mutation of the HFE gene, while a minority are compound heterozygotes for C282Y and H63D. The prevalence of these mutations in non-Caucasian patients with HH is lower than expected. The objective of the present study was to evaluate the frequencies of HLA-A antigens and the C282Y and H63D mutations of the HFE gene in Brazilian patients with HH and to compare clinical and laboratory profiles of C282Y-positive and -negative patients with HH. The frequencies of HLA-A and C282Y and H63D mutations were determined by PCR-based methods in 15 male patients (median age 44 (20-72) years) with HH. Eight patients (53%) were homozygous and one (7%) was heterozygous for the C282Y mutation. None had compound heterozygosity for C282Y and H63D mutations. All but three C282Y homozygotes were positive for HLA-A3 and three other patients without C282Y were shown to be either heterozygous (N = 2) or homozygous (N = 1) for HLA-A3. Patients homozygous for the C282Y mutation had higher ferritin levels and lower age at onset, but the difference was not significant. The presence of C282Y homozygosity in roughly half of the Brazilian patients with HH, together with the findings of HLA-A homozygosity in C282Y-negative subjects, suggest that other mutations in the HFE gene or in other genes involved in iron homeostasis might also be linked to HH in Brazil.
Resumo:
Much effort has been devoted to the identification of immunologically important antigens of Mycobacterium tuberculosis and to the combination of target antigens to which antibodies from serum of tuberculous patients could react specifically. We searched for IgG antibodies specific for antigens of 45 to 6 kDa obtained after sonication of the well-characterized wild M. tuberculosis strain in order to detect differences in the antibody response to low molecular weight antigens from M. tuberculosis between patients with pulmonary tuberculosis and contacts. Specific IgG antibodies for these antigens were detected by Western blot analysis of 153 serum samples collected from 51 patients with confirmed pulmonary tuberculosis. Three samples were collected from each patient: before therapy, and after 2 and 6 months of treatment. We also analyzed 25 samples obtained from contacts, as well as 30 samples from healthy individuals with known tuberculin status, 50 samples from patients with other lung diseases and 200 samples from healthy blood donors. The positive predictive value for associated IgG reactivity against the 6-kDa and 16-kDa antigens, 6 and 38 kDa, and 16 and 38 kDa was 100% since simultaneous reactivity for these antigens was absent in healthy individuals and individuals with other lung diseases. This association was observed in 67% of the patients, but in only 8% of the contacts. The humoral response against antigens of 16 and 6 kDa seems to be important for the detection of latent tuberculosis since the associated reactivity to these antigens is mainly present in individuals with active disease.
Resumo:
Blomia tropicalis (Bt) and Dermatophagoides pteronyssinus (Dp) are the prevalent house dust mites in tropical countries and are associated with allergic diseases. Glycosylated antigens are highly immunogenic and involved in different pathologies. We evaluated the presence of IgE, IgG1, and IgG4 to concanavalin A-binding antigens (Bt-Con-A) isolated from Bt-total extract in sera of allergic and non-allergic subjects. Bt-total and Bt-Con-A extracts were evaluated by SDS-PAGE and ELISA for reacting with IgE, IgG1, and IgG4 in sera of 121 patients with allergic rhinitis and 36 non-allergic individuals. All subjects were skin prick tested with Bt-total extract and inhibition tests were performed for IgE, IgG1, and IgG4 using both extracts (Bt-total and Bt-Con-A). Skin prick test showed that 58% of the patients were sensitized to Bt (Bt+), with 52% reactive to both mites (Bt and Dp) and 6% to Bt only. A broad spectrum of proteins (14-152 kDa) was visualized in Bt-total and components >27 kDa for the Bt-Con-A extract. ELISA showed a similar profile of IgE, IgG1 and IgG4 levels in response to Bt-total and Bt-Con-A extracts in different groups, although Bt+ patients showed a lower IgG4 reactivity to Bt-Con-A extract. Specific IgG1 levels were higher in Bt+ patients than in control subjects, and IgG4 levels showed no significant difference among groups. ELISA inhibition showed a partial IgE and total IgG1 and IgG4 cross-reactivity with Dp extract for Bt-total and Bt-Con-A extracts. We conclude that Con-A-binding components isolated from Bt constitute major allergens and are involved in both allergen sensitization (IgE response) and homeostasis maintenance (IgG1 and IgG4 responses).
Resumo:
Coronavirus nucleoproteins (N proteins) localize to the cytoplasm and the nucleolus, a subnuclear structure, in both virus-infected primary cells and in cells transfected with plasmids that express N protein. The nucleolus is the site of ribosome biogenesis and sequesters cell cycle regulatory complexes. Two of the major components of the nucleolus are fibrillarin and nucleolin. These proteins are involved in nucleolar assembly and ribosome biogenesis and act as chaperones for the import of proteins into the nucleolus. We have found that fibrillarin is reorganized in primary cells infected with the avian coronavirus infectious bronchitis virus (IBV) and in continuous cell lines that express either IBV or mouse hepatitis virus N protein. Both N protein and a fibrillarin-green fluorescent protein fusion protein colocalized to the perinuclear region and the nucleolus. Pull-down assays demonstrated that IBV N protein interacted with nucleolin and therefore provided a possible explanation as to how coronavirus N proteins localize to the nucleolus. Nucleoli, and proteins that localize to the nucleolus, have been implicated in cell growth-cell cycle regulation. Comparison of cells expressing IBV N protein with controls indicated that cells expressing N protein had delayed cellular growth. This result could not to be attributed to apoptosis. Morphological analysis of these cells indicated that cytokinesis was disrupted, an observation subsequently found in primary cells infected with IBV. Coronaviruses might therefore delay the cell cycle in interphase, where maximum translation of viral mRNAs can occur.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Toxocara vitulorum, a nematode parasite in the small intestine of cattle and water buffaloes, causes high morbidity and mortality of 1-3 months old buffalo calves. This research evaluated the specific perieneteric antigens (Pe) reactivity of anti-T. vitulorum-Pe antibody (Tv-Pe-Ab) in both immune sera and colostrum from buffalo cows immediately post-partum from buffalo cows. The presence of Tv-Pe-Ab in sera of buffalo newborn calves was also examined at 1 day before and after suckling the colostrum as well as in sera from naturally infected calves at the beginning and peak of the maximum infection and then again during the period of rejection and post-rejection of the parasite. Pe antigens were characterized for Tv-Pe-Ab by SDS-PAGE and Western blot (WB). The SDS-PAGE showed that Pe contained nine protein bands (11, 14, 31, 38, 58, 76, 88,112 and 165 kDa). All Pe bands were recognized by Tv-Pe-Ab in sera and colostrum of buffalo cows. Only the serum antibodies of buffalo calves at 1 day of age after suckling the colostrum and during the beginning of T. vitulorum infection recognized Pe antigen's nine bands. In contrast, serum antibodies from 1-day-old buffalo calves, taken before suckling colostrum, did not react with any protein band. In suckling calves, which reached peak egg output, rejection and post-rejection stages of the infection, serum Tv-Pe-Ab reactivity with lower molecular weight protein bands (11-76 kDa) was lost and only reactivity with the Pe protein bands of higher molecular weight (88, 112 and 165 kDa) remained. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Cutaneous biopsies (n = 94) obtained from 88 patients with American tegumentary leishmaniasis were studied by conventional and immunohistochemical techniques. Specimens were distributed as active lesions of cutaneous leishmaniasis (n = 53) (Group I), cicatricial lesions of cutaneous leishmaniasis (n = 35) (Group II) and suggestive scars of healed mucosal leishmaniasis patients (n = 6) (Group III). In addition, active cutaneous lesions of other etiology (n = 24) (Group C1) and cutaneous scars not related to leishmaniasis (n = 10) (Group C2) were also included in the protocol. Amastigotes in Group I biopsies were detected by routine histopathological exam (30.2%), imprint (28.2%), culture (43.4%), immunofluorescence (41.4%) and immunoperoxidase (58.5%) techniques; and by the five methods together (79.3%). In Group II, 5.7% of cultures were positive. Leishmanial antigen was also seen in the cytoplasm of macrophages and giant cells (cellular pattern), vessel walls (vascular pattern) and dermal nerves (neural pattern). Positive reaction was detected in 49 (92.5%), 20 (57%) and 4 (67%) biopsies of Groups I, II and III, respectively. Antigen persistency in cicatricial tissue may be related to immunoprotection or, on the contrary, to the development of late lesions. We suggest that the cellular, vascular and neural patterns could be applied in the immunodiagnosis of active and cicatricial lesions in which leishmaniasis is suspected.