951 resultados para Nutrient metabolism
Resumo:
The Nutrient Enhanced Coastal Ocean Productivity (NECOP) Program is a component of NOAA's Coastal Ocean Program. The central hypothesis of this research is: Anthropogenic nutrient inputs have enhanced coastal ocean productivity with subsequent impacts on coastal ocean water quality, living resource yields, and the global marine carbon cycle. The initial study area for this program is the Mississippi/Atchafalaya River Outflow and adjacent Louisiana shelf region.
Resumo:
The productivity level of a brackishwater fish culture farm consisting of 25 ponds, with a water spread area of 2.5 ha, was studied. Gross community photosynthesis of the farm was found to be 46.32 Kcal/m2/day, which is equivalent to the release of 13.23 of O2/m2/day, or the fixing of 4.10 gC/m2/day. Respiratory demand of the farm was estimated to be 44.66 kcal/m2/day, which is equivalent to the uptake of 12.76 g O2/m2/day or the utilization of 3.95 gC/m2/day. Photosynthetic efficiency of the farm was high at 2.26%. The P/R ratio was 1.04, showing eutrophic nature.
Resumo:
Oxygen consumption in Oreochromis mossambicus, Peters (3-60g in weight) was measured under different stress conditions at a constant temperature of 20±1°C. The rate of oxygen consumption was significantly higher (0.170 ml gˉ¹hˉ¹)at a salinity of 30x10ˉ³ compared with that (0.132ml gˉ¹hˉ¹) in freshwater. The oxygen consumption was also found to be affected by changes in pH. Weight specific rate decreased significantly from 0.113 to 0.045 ml gˉ¹hˉ¹ with increasing body weight. A positive correlation was recorded between availability of dissolved oxygen and the rate of oxygen consumption by the fish. While copper sulphate and malachite green inhibited the respiratory metabolism, formaldehyde treatment raised it from 0.088 to 0.118ml gˉ¹hˉ¹.
Resumo:
Resting metabolism in Indian major carp, Catla catla Ham. fingerlings were investigated. For this purpose a water recirculatory system in the laboratory was used. The metabolic energy losses were determined by the indirect method of oxygen consumption by the fish and were then multiplied by an oxycalorific coefficient (Q-ox). Five metabolism chambers in the experimental system were used where there were two same treatment runs in quadruplicate of mean total weight of fish fingerlings of 109.5, 110.4, 112.8 and 111.6g/chamber. The water temperature in the system was 28±0.5°C. The mean metabolic rate in the replicates showed no significant variation (p>0.05) and was found to be 151.66, 153.91, 150.25, 152.74 mgO-2/kg/h respectively. This showed an equivalent energy loss 5.40, 5.52, 5.51 and 5.56 KJ/chamber/day (35.60, 35.92, 36.67 and 36.40 KJ/kg/day) respectively. Energetics of resting metabolism in an Indian major carp (Catla catla Ham.)
Resumo:
Feeding metabolism in an Indian major carp, Catla catla fingerlings of 10.8+0.56g was investigated in a flow-through water recirculating system. The metabolic energy loss in resting metabolism and feeding metabolism were determined by the indirect method of oxygen consumption followed by multiplication by suitable oxycalorific coefficient. This was done in four metabolic chambers of a respirometer system. Ten fish fingerlings of mean total weight of 109.5, 110.4 and 112.8g/chambers respectively each in two experimental runs of three treatments a, b and c were used. The mean resting metabolic rate during unfed condition showed no significant variation in different treatments. The fish in three treatments a, b and c fed on diets containing 28, 33 and 38% crude protein had significantly different (p<0.05) post-fed SDA magnitude of 497.7, 638.7 and 735.5 mgO2/chamber/day having an equivalent energy loss of 12.68, 14.68 and 15.86 KJ respectively. The SDA co-efficient in three treatments a, b and c were 14.95, 19.00 and 22.36% respectively whereas, respiratory energy - 'R' as % of mean total ingested energy in three treatments were 26.93, 31.17 and 34.74% respectively showing a significant increase (p<0.05) with increase of protein. Feeding metabolism in an Indian major carp (Catla catla Lin.) fed on different protein diets.
Resumo:
A laboratory trial was conducted in a sea water recirculatory system to study the nutrient digestibility coefficients of diets with varying energy to protein ratios in Japanese flounder Paralicthys olivaceus. Six different experimental diets with two protein levels (45 and 55%) having six different energy to protein ratio of 87, 90, 94, 107, 110 and 114 were formulated using white fish meal and casein as protein sources. The results of the study showed that the apparent protein digestibility (APD) value ranged between 90.59 to 91.61% and there were no significant differences (P>0.05) between the APD values of diets 1, 2, 3, 4 and 6. The apparent lipid digestibility (ALD) values of diets ranged between 88.24 to 90.18%. The apparent energy digestibility (AED) values ranged between 80.55 to 87.52% with diet 3 producing significantly the highest AED value. In general, except in diet 1 the ALD and AED values increased with the increase of dietary lipid at both protein levels. The results of the present investigation indicated that Japanese flounder can efficiently digest the dietary nutrients at varying energy to protein ratios.
Resumo:
Studies on nutrient utilisation and growth of rohu (Labeo rohita) fingerlings (3.13-4.09 g) raised on seven feeding schedules under laboratory conditions (26.3-33.5°C) showed that two days regular feeding on Diet B (high protein, 38.90%) resulted in maximum growth and protein retention efficiency. While regular feeding on low protein diet (Diet A) resulted in poor nutrient utilisation and growth of fish, high protein diet (Diet B) did not show any significant difference in growth from the mixed 2A-3B schedules but exhibited comparatively low protein retention efficiency. The other feeding schedules were 1A-2B, 1A-3B, 2A-2B and 2A-4B, where the numerical value refers to the number of days for continuous feeding of a particular diet. The diets A and B served as the controls which contained 3.40 and 3.67 kcal/g gross energy respectively. The 2A-3B feeding schedule was also found to be highly economic as an expenditure of Rs.11/- only was required for raising the body weight by one kilo as against Rs.17/- with high protein diet (Diet B) as calculated