917 resultados para Nonlinear gravitational waves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conferência: CONTROLO’2012 - 16-18 July 2012 - Funchal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the describing function (DF) of systems consisting in a mass subjected to nonlinear friction. The friction force is composed in three components namely, the viscous, the Coulomb and the static forces. The system dynamics is analyzed in the DF perspective revealing a fractional-order behaviour. The reliability of the DF method is evaluated through the signal harmonic content and the limit cycle prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of fractional-order controllers is currently one of the most promising fields of research. However, most of the work in this area addresses the case of linear systems. This paper reports on the analysis of fractional-order control of nonlinear systems. The performance of discrete fractional-order PID controllers in the presence of several nonlinearities is discussed. Some results are provided that indicate the superior robustness of such algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study exotic patterns appearing in a network of coupled Chen oscillators. Namely, we consider a network of two rings coupled through a “buffer” cell, with Z3×Z5 symmetry group. Numerical simulations of the network reveal steady states, rotating waves in one ring and quasiperiodic behavior in the other, and chaotic states in the two rings, to name a few. The different patterns seem to arise through a sequence of Hopf bifurcations, period-doubling, and halving-period bifurcations. The network architecture seems to explain certain observed features, such as equilibria and the rotating waves, whereas the properties of the chaotic oscillator may explain others, such as the quasiperiodic and chaotic states. We use XPPAUT and MATLAB to compute numerically the relevant states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved class of nonlinear bidirectional Boussinesq equations of sixth order using a wave surface elevation formulation is derived. Exact travelling wave solutions for the proposed class of nonlinear evolution equations are deduced. A new exact travelling wave solution is found which is the uniform limit of a geometric series. The ratio of this series is proportional to a classical soliton-type solution of the form of the square of a hyperbolic secant function. This happens for some values of the wave propagation velocity. However, there are other values of this velocity which display this new type of soliton, but the classical soliton structure vanishes in some regions of the domain. Exact solutions of the form of the square of the classical soliton are also deduced. In some cases, we find that the ratio between the amplitude of this wave and the amplitude of the classical soliton is equal to 35/36. It is shown that different families of travelling wave solutions are associated with different values of the parameters introduced in the improved equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

River Flow, Vol. 2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Journal of Hydraulic Engineering, Vol. 135, No. 11, November 1, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the effect of ship speed and water depth on the propagation of ship generated waves. The ship is represented by a moving pressure distribution function at the free surface that is able to reproduce most of the phenomena involved in wave propagation. Results are obtained for a ship sailing along a coastal stretch made of a sloping bottom and a constant depth region. The results show that in the sloping bottom the crests of waves are bent along the slope and in the constant depth the standard Kelvin wave patterns can be found for the subcritical regime. In the critical regime the wave system is characterized by significant diverging waves and for a supercritical regime, the transverse waves disappear. © 2015 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses limit cycles and signal propagation in dynamical systems with backlash. The study follows the describing function (DF) method for approximate analysis of nonlinearities and generalizes it in the perspective of the fractional calculus. The concept of fractional order describing function (FDF) is illustrated and the results for several numerical experiments are analysed. FDF leads to a novel viewpoint for limit cycle signal propagation as time-space waves within system structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously we have presented a model for generating human-like arm and hand movements on an unimanual anthropomorphic robot involved in human-robot collaboration tasks. The present paper aims to extend our model in order to address the generation of human-like bimanual movement sequences which are challenged by scenarios cluttered with obstacles. Movement planning involves large scale nonlinear constrained optimization problems which are solved using the IPOPT solver. Simulation studies show that the model generates feasible and realistic hand trajectories for action sequences involving the two hands. The computational costs involved in the planning allow for real-time human robot-interaction. A qualitative analysis reveals that the movements of the robot exhibit basic characteristics of human movements.