997 resultados para Nonequilibrium statistical mechanics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work I reported recent results in the field of Statistical Mechanics of Equilibrium, and in particular in Spin Glass models and Monomer Dimer models . We start giving the mathematical background and the general formalism for Spin (Disordered) Models with some of their applications to physical and mathematical problems. Next we move on general aspects of the theory of spin glasses, in particular to the Sherrington-Kirkpatrick model which is of fundamental interest for the work. In Chapter 3, we introduce the Multi-species Sherrington-Kirkpatrick model (MSK), we prove the existence of the thermodynamical limit and the Guerra's Bound for the quenched pressure together with a detailed analysis of the annealed and the replica symmetric regime. The result is a multidimensional generalization of the Parisi's theory. Finally we brie y illustrate the strategy of the Panchenko's proof of the lower bound. In Chapter 4 we discuss the Aizenmann-Contucci and the Ghirlanda-Guerra identities for a wide class of Spin Glass models. As an example of application, we discuss the role of these identities in the proof of the lower bound. In Chapter 5 we introduce the basic mathematical formalism of Monomer Dimer models. We introduce a Gaussian representation of the partition function that will be fundamental in the rest of the work. In Chapter 6, we introduce an interacting Monomer-Dimer model. Its exact solution is derived and a detailed study of its analytical properties and related physical quantities is performed. In Chapter 7, we introduce a quenched randomness in the Monomer Dimer model and show that, under suitable conditions the pressure is a self averaging quantity. The main result is that, if we consider randomness only in the monomer activity, the model is exactly solvable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Das Verhalten kolloidaler Suspensionen unter räumlich beschränkter Geometrie ist von großer Bedeutung für die statistische Physik wie auch für die Technologie. Von speziellem Interesse sind Modellsysteme geladener kolloidaler Sphären aufgrund ihrer langreichweitigen und veränderbaren Wechselwirkungen. In dieser Arbeit wurde ein experimenteller Aufbau für die optische mikroskopische Untersuchung solcher, zwischen ebenen Wänden beschränkter Systeme realisiert. Anhand von Piezo-Aktuatoren kann die Zellgeometrie flexibel und präzise eingestellt werden. Unter Verwendung eines Pumpkreislaufs mit einer Ionentauschersäule können kolloidale Suspensionen unter stark entsalzten Bedingungen effizient präpariert werden. Anhand dieses Aufbaus wurde zunächst das Gleichgewichtsphasendiagramm monodisperser geladener kolloidaler Sphären zwischen parallelen Wänden untersucht. Es wurden quantitative Resultate für den Grenzfall starker Entsalzung erzielt, welche mit theoretischen Grundzustandsvorhersagen übereinstimmen. In Doppellagensystemen konnte die Existenz transienter kolloidaler Moiré-Rotationsmuster demonstriert werden, welche besondere zweidimensionale Kristallstrukturen mit komplexer Basis darstellen. Es wurden ferner Nichtgleichgewichtsphänomene untersucht, welche durch Gradienten von lokal freigesetzten Elektrolyten verursacht werden. Durch hauptsächlich diffusioosmotischen Partikeltransport entlang einer einzelnen geladenen Substratoberfläche konnten die Bildung kristalliner Ordnung sowie komplexe, selbstorganisierte Bewegungszustände in einem verdünnten kolloidalen Monolagenfluid bei kleinen Reynolds-Zahlen induziert werden. Interessante Perspektiven für die zukünftige Verwendung des experimentellen Aufbaus ergeben sich aus Beobachtungen verschiedener weiterer Phänomene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The (2 + 1)-d U(1) quantum link model is a gauge theory, amenable to quantum simulation, with a spontaneously broken SO(2) symmetry emerging at a quantum phase transition. Its low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by an SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. At the quantum phase transition, the model mimics some features of deconfined quantum criticality, but remains linearly confining. Deconfinement only sets in at high temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A statistical mechanics view leads to the conclusion that polar molecules allowed to populate a degree of freedom for orientational disorder in a condensed phase thermalize into a bi-polar state featuring zero net polarity. In cases of orientational disorder polar order of condensed molecular matter can only exist in corresponding sectors of opposite average polarities. Channel type inclusion compounds, single component molecular crystals, solid solutions, optically anomalous crystals, inorganic ionic crystals, biomimetic crystals and biological tissues investigated by scanning pyroelectric and phase sensitive second harmonic generation microscopy all showed domains of opposite polarities in their final grown state. For reported polar molecular crystal structures it is assumed that kinetic hindrance along one direction of the polar axis is preventing the formation of a bi-polar state, thus allowing for a kinetically controlled mono-domain state. In this review we summarize theoretical and experimental findings leading to far reaching conclusions on the polar state of solid molecular matter. “… no stationary state … of a system has an electrical dipole moment.” P. W. Anderson, Science, 1972, 177, 393.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polar molecular crystals seem to contradict a quantum mechanical statement, according to which no stationary state of a system features a permanent electrical polarization. By stationary we understand here an ensemble for which thermal averaging applies. In the language of statistical mechanics we have thus to ask for the thermal expectation value of the polarization in molecular crystals. Nucleation aggregates and growing crystal surfaces can provide a single degree of freedom for polar molecules required to average the polarization. By means of group theoretical reasoning and Monte Carlo simulations we show that such systems thermalize into a bi-polar state featuring zero bulk polarity. A two domain, i.e. bipolar state is obtained because boundaries are setting up opposing effective electrical fields. Described phenomena can be understood as a process of partial ergodicity-restoring. Experimentally, a bi-polar state of molecular crystals was demonstrated using phase sensitive second harmonic generation and scanning pyroelectric microscopy

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper shows a physically cogent model for electrical noise in resistors that has been obtained from Thermodynamical reasons. This new model derived from the works of Johnson and Nyquist also agrees with the Quantum model for noisy systems handled by Callen and Welton in 1951, thus unifying these two Physical viewpoints. This new model is a Complex or 2-D noise model based on an Admittance that considers both Fluctuation and Dissipation of electrical energy to excel the Real or 1-D model in use that only considers Dissipation. By the two orthogonal currents linked with a common voltage noise by an Admittance function, the new model is shown in frequency domain. Its use in time domain allows to see the pitfall behind a paradox of Statistical Mechanics about systems considered as energy-conserving and deterministic on the microscale that are dissipative and unpredictable on the macroscale and also shows how to use properly the Fluctuation-Dissipation Theorem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tesis se centra en el estudio de medios granulares blandos y atascados mediante la aplicación de la física estadística. Esta aproximación se sitúa entre los tradicionales enfoques macro y micromecánicos: trata de establecer cuáles son las propiedades macroscópicas esperables de un sistema granular en base a un análisis de las propiedades de las partículas y las interacciones que se producen entre ellas y a una consideración de las restricciones macroscópicas del sistema. Para ello se utiliza la teoría estadística junto con algunos principios, conceptos y definiciones de la teoría de los medios continuos (campo de tensiones y deformaciones, energía potencial elástica, etc) y algunas técnicas de homogeneización. La interacción entre las partículas es analizada mediante las aportaciones de la teoría del contacto y de las fuerzas capilares (producidas por eventuales meniscos de líquido cuando el medio está húmedo). La idea básica de la mecánica estadística es que entre todas soluciones de un problema físico (como puede ser el ensamblaje en equilibrio estático de partículas de un medio granular) existe un conjunto que es compatible con el conocimiento macroscópico que tenemos del sistema (por ejemplo, su volumen, la tensión a la que está sometido, la energía potencial elástica que almacena, etc.). Este conjunto todavía contiene un número enorme de soluciones. Pues bien, si no hay ninguna información adicional es razonable pensar que no existe ningún motivo para que alguna de estas soluciones sea más probable que las demás. Entonces parece natural asignarles a todas ellas el mismo peso estadístico y construir una función matemática compatible. Actuando de este modo se obtiene cuál es la función de distribución más probable de algunas cantidades asociadas a las soluciones, para lo cual es muy importante asegurarse de que todas ellas son igualmente accesibles por el procedimiento de ensamblaje o protocolo. Este enfoque se desarrolló en sus orígenes para el estudio de los gases ideales pero se puede extender para sistemas no térmicos como los analizados en esta tesis. En este sentido el primer intento se produjo hace poco más de veinte años y es la colectividad de volumen. Desde entonces esta ha sido empleada y mejorada por muchos investigadores en todo el mundo, mientras que han surgido otras, como la de la energía o la del fuerza-momento (tensión multiplicada por volumen). Cada colectividad describe, en definitiva, conjuntos de soluciones caracterizados por diferentes restricciones macroscópicas, pero de todos ellos resultan distribuciones estadísticas de tipo Maxwell-Boltzmann y controladas por dichas restricciones. En base a estos trabajos previos, en esta tesis se ha adaptado el enfoque clásico de la física estadística para el caso de medios granulares blandos. Se ha propuesto un marco general para estudiar estas colectividades que se basa en la comparación de todas las posibles soluciones en un espacio matemático definido por las componentes del fuerza-momento y en unas funciones de densidad de estados. Este desarrollo teórico se complementa con resultados obtenidos mediante simulación de la compresión cíclica de sistemas granulares bidimensionales. Se utilizó para ello un método de dinámica molecular, MD (o DEM). Las simulaciones consideran una interacción mecánica elástica, lineal y amortiguada a la que se ha añadido, en algunos casos, la fuerza cohesiva producida por meniscos de agua. Se realizaron cálculos en serie y en paralelo. Los resultados no solo prueban que las funciones de distribución de las componentes de fuerza-momento del sistema sometido a un protocolo específico parecen ser universales, sino que también revelan que existen muchos aspectos computacionales que pueden determinar cuáles son las soluciones accesibles. This thesis focuses on the application of statistical mechanics for the study of static and jammed packings of soft granular media. Such approach lies between micro and macromechanics: it tries to establish what the expected macroscopic properties of a granular system are, by starting from a micromechanical analysis of the features of the particles, and the interactions between them, and by considering the macroscopic constraints of the system. To do that, statistics together with some principles, concepts and definitions of continuum mechanics (e.g. stress and strain fields, elastic potential energy, etc.) as well as some homogenization techniques are used. The interaction between the particles of a granular system is examined too and theories on contact and capillary forces (when the media are wet) are revisited. The basic idea of statistical mechanics is that among the solutions of a physical problem (e.g. the static arrangement of particles in mechanical equilibrium) there is a class that is compatible with our macroscopic knowledge of the system (volume, stress, elastic potential energy,...). This class still contains an enormous number of solutions. In the absence of further information there is not any a priori reason for favoring one of these more than any other. Hence we shall naturally construct the equilibrium function by assigning equal statistical weights to all the functions compatible with our requirements. This procedure leads to the most probable statistical distribution of some quantities, but it is necessary to guarantee that all the solutions are likely accessed. This approach was originally set up for the study of ideal gases, but it can be extended to non-thermal systems too. In this connection, the first attempt for granular systems was the volume ensemble, developed about 20 years ago. Since then, this model has been followed and improved upon by many researchers around the world, while other two approaches have also been set up: energy and force-moment (i.e. stress multiplied by volume) ensembles. Each ensemble is described by different macroscopic constraints but all of them result on a Maxwell-Boltzmann statistical distribution, which is precisely controlled by the respective constraints. According to this previous work, in this thesis the classical statistical mechanics approach is introduced and adapted to the case of soft granular media. A general framework, which includes these three ensembles and uses a force-moment phase space and a density of states function, is proposed. This theoretical development is complemented by molecular dynamics (or DEM) simulations of the cyclic compression of 2D granular systems. Simulations were carried out by considering spring-dashpot mechanical interactions and attractive capillary forces in some cases. They were run on single and parallel processors. Results not only prove that the statistical distributions of the force-moment components obtained with a specific protocol seem to be universal, but also that there are many computational issues that can determine what the attained packings or solutions are.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate optimal strategies to defend valuable goods against the attacks of a thief. Given the value of the goods and the probability of success for the thief, we look for the strategy that assures the largest benefit to each player irrespective of the strategy of his opponent. Two complementary approaches are used: agent-based modeling and game theory. It is shown that the compromise between the value of the goods and the probability of success defines the mixed Nash equilibrium of the game, that is compared with the results of the agent-based simulations and discussed in terms of the system parameters.