977 resultados para Nonconvex linear differential inclusions
Resumo:
In the current thesis, the reasons for the differential impact of Holocaust trauma on Holocaust survivors, and the differential intergenerational transmission of this trauma to survivors’ children and grandchildren were explored. A model specifically related to Holocaust trauma and its transmission was developed based on trauma, family systems and attachment theories as well as theoretical and anecdotal conjecture in the Holocaust literature. The Model of the Differential Impact of Holocaust Trauma across Three Generations was tested firstly by extensive meta-analyses of the literature pertaining to the psychological health of Holocaust survivors and their descendants and secondly via analysis of empirical study data. The meta-analyses reported in this thesis represent the first conducted with research pertaining to Holocaust survivors and grandchildren of Holocaust survivors. The meta-analysis of research conducted with children of survivors is the first to include both published and unpublished research. Meta-analytic techniques such as meta-regression and sub-set meta-analyses provided new information regarding the influence of a number of unmeasured demographic variables on the psychological health of Holocaust survivors and descendants. Based on the results of the meta-analyses it was concluded that Holocaust survivors and their children and grandchildren suffer from a statistically significantly higher level or greater severity of psychological symptoms than the general population. However it was also concluded that there is statistically significant variation in psychological health within the Holocaust survivor and descendant populations. Demographic variables which may explain a substantial amount of this variation have been largely under-assessed in the literature and so an empirical study was needed to clarify the role of demographics in determining survivor and descendant mental health. A total of 124 participants took part in the empirical study conducted for this thesis with 27 Holocaust survivors, 69 children of survivors and 28 grandchildren of survivors. A worldwide recruitment process was used to obtain these participants. Among the demographic variables assessed in the empirical study, aspects of the survivors’ Holocaust trauma (namely the exact nature of their Holocaust experiences, the extent of family bereavement and their country of origin) were found to be particularly potent predictors of not only their own psychological health but continue to be strongly influential in determining the psychological health of their descendants. Further highlighting the continuing influence of the Holocaust was the finding that number of Holocaust affected ancestors was the strongest demographic predictor of grandchild of survivor psychological health. Apart from demographic variables, the current thesis considered family environment dimensions which have been hypothesised to play a role in the transmission of the traumatic impact of the Holocaust from survivors to their descendants. Within the empirical study, parent-child attachment was found to be a key determinant in the transmission of Holocaust trauma from survivors to their children and insecure parent-child attachment continues to reverberate through the generations. In addition, survivors’ communication about the Holocaust and their Holocaust experiences to their children was found to be more influential than general communication within the family. Ten case studies (derived from the empirical study data set) are also provided; five Holocaust survivors, three children of survivors and two grandchildren of survivors. These cases add further to the picture of heterogeneity of the survivor and descendant populations in both experiences and adaptations. It is concluded that the legacy of the Holocaust continues to leave its mark on both its direct survivors and their descendants. Even two generations removed, the direct and indirect effects of the Holocaust have yet to be completely nullified. Research with Holocaust survivor families serves to highlight the differential impacts of state-based trauma and the ways in which its effects continue to be felt for generations. The revised and empirically tested Model of the Differential Impact of Holocaust Trauma across Three Generations presented at the conclusion of this thesis represents a further clarification of existing trauma theories as well as the first attempt at determining the relative importance of both cognitive, interpersonal/interfamilial interaction processes and demographic variables in post-trauma psychological health and transmission of traumatic impact.
Resumo:
Within the current climate of unpredictability and constant change, young people at school are faced with a multitude of choices and contradictory influences. In this article, I argue that (re)presentations of young people in youth research need to reflect the complexity and multiplicity of their lives and changing priorities, and I attempt to (re)present a small group of young people in this particular milieu. I illustrate some of the competing influences in their lives, and I outline some specific strategies that are useful for (re)presenting these contextual worlds. The strategies I advocate disrupt the homogenous representations of ‘youth’ as a developmental phase and instead reflect the diverse spheres of influence which shape their subjectivities and practices.
Resumo:
The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, commonly employ Bank-to-Turn ma- neuvers to change heading and thus direction of travel. Whilst effective, banking an aircraft during the inspection of ground based features hinders data collection, with body fixed sen- sors angled away from the direction of turn and a panning motion induced through roll rate that can reduce data quality. By adopting Skid-to-Turn maneuvers, the aircraft can change heading whilst maintaining wings level flight, thus allowing body fixed sensors to main- tain a downward facing orientation. An Image-Based Visual Servo controller is developed to directly control the position of features as captured by onboard inspection sensors. This improves on the indirect approach taken by other tracking controllers where a course over ground directly above the feature is assumed to capture it centered in the field of view. Performance of the proposed controller is compared against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to replicate the field of view of a body fixed camera.
Resumo:
This article deals with the non-linear oscillations assessment of a distribution static comensator ooperating in voltage control mode using the bifurcation theory. A mathematical model of the distribution static compensator in the voltage control mode to carry out the bifurcation analysis is derived. The stabiity regions in the Thevein equivalent plane are computed. In addition, the stability regions in the control gains space, as well as the contour lines for different Floquet multipliers are computed. The AC and DC capacitor impacts on the stability are analyzed through the bifurcation theory. The observations are verified through simulaation studies. The computation of the stability region allows the assessment of the stable operating zones for a power system that includes a distribution static compensator operating in the voltage mode.
Resumo:
The Streaming SIMD extension (SSE) is a special feature embedded in the Intel Pentium III and IV classes of microprocessors. It enables the execution of SIMD type operations to exploit data parallelism. This article presents improving computation performance of a railway network simulator by means of SSE. Voltage and current at various points of the supply system to an electrified railway line are crucial for design, daily operation and planning. With computer simulation, their time-variations can be attained by solving a matrix equation, whose size mainly depends upon the number of trains present in the system. A large coefficient matrix, as a result of congested railway line, inevitably leads to heavier computational demand and hence jeopardizes the simulation speed. With the special architectural features of the latest processors on PC platforms, significant speed-up in computations can be achieved.
Resumo:
Extensive groundwater withdrawal has resulted in a severe seawater intrusion problem in the Gooburrum aquifers at Bundaberg, Queensland, Australia. Better management strategies can be implemented by understanding the seawater intrusion processes in those aquifers. To study the seawater intrusion process in the region, a two-dimensional density-dependent, saturated and unsaturated flow and transport computational model is used. The model consists of a coupled system of two non-linear partial differential equations. The first equation describes the flow of a variable-density fluid, and the second equation describes the transport of dissolved salt. A two-dimensional control volume finite element model is developed for simulating the seawater intrusion into the heterogeneous aquifer system at Gooburrum. The simulation results provide a realistic mechanism by which to study the convoluted transport phenomena evolving in this complex heterogeneous coastal aquifer.
Resumo:
Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III and IV classes of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving linear systems with SSE and discuss advantages and disadvantages of this approach based on our experimental study.
Resumo:
Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.
Resumo:
We present several new observations on the SMS4 block cipher, and discuss their cryptographic significance. The crucial observation is the existence of fixed points and also of simple linear relationships between the bits of the input and output words for each component of the round functions for some input words. This implies that the non-linear function T of SMS4 does not appear random and that the linear transformation provides poor diffusion. Furthermore, the branch number of the linear transformation in the key scheduling algorithm is shown to be less than optimal. The main security implication of these observations is that the round function is not always non-linear. Due to this linearity, it is possible to reduce the number of effective rounds of SMS4 by four. We also investigate the susceptibility of SMS4 to further cryptanalysis. Finally, we demonstrate a successful differential attack on a slightly modified variant of SMS4. These findings raise serious questions on the security provided by SMS4.