907 resultados para Non-uniform flow


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The furnace temperature and heat flux distributions of 1 MW tangentially fired furnace were studied during coal-over-coal reburn, and the influences of the position of reburn nozzle and reburn fuel fraction on furnace temperature and heat flux distributions were investigated. Compared with the baseline, the flue gas temperature is 70–90 C lower in primary combustion and 130–150 C higher at furnace exit, and the variations of the flue gas temperature distributions along furnace height are slower. The temperature distribution along the width of furnace wall decreases with the increase of the relative furnace height. In the primary combustion zone and the reburn zone, the temperature and heat flux distributions of furnace wall are much non-uniform and asymmetric along the width of furnace wall, those of furnace wall in the burnout zone are relatively uniform, and the temperature non-uniformity coefficients of the primary combustion zone, the reburn zone and the burnout zone are 0.290, 0.100 and 0.031, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, I apply detailed waveform modeling to study noise correlations in different environments, and earthquake waveforms for source parameters and velocity structure.

Green's functions from ambient noise correlations have primarily been used for travel-time measurement. In Part I of this thesis, by detailed waveform modeling of noise correlation functions, I retrieve both surface waves and crustal body waves from noise, and use them in improving earthquake centroid locations and regional crustal structures. I also present examples in which the noise correlations do not yield Green's functions, yet the results are still interesting and useful after case-by-case analyses, including non-uniform distribution of noise sources, spurious velocity changes, and noise correlations on the Amery Ice Shelf.

In Part II of this thesis, I study teleseismic body waves of earthquakes for source parameters or near-source structure. With the dense modern global network and improved methodologies, I obtain high-resolution earthquake locations, focal mechanisms and rupture processes, which provide critical insights to earthquake faulting processes in shallow and deep parts of subduction zones. Waveform modeling of relatively simple subduction zone events also displays new constraints on the structure of subducted slabs.

In summary, behind my approaches to the relatively independent problems, the philosophy is to bring observational insights from seismic waveforms in critical and simple ways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The quasicontinuum (QC) method was introduced to coarse-grain crystalline atomic ensembles in order to bridge the scales from individual atoms to the micro- and mesoscales. Though many QC formulations have been proposed with varying characteristics and capabilities, a crucial cornerstone of all QC techniques is the concept of summation rules, which attempt to efficiently approximate the total Hamiltonian of a crystalline atomic ensemble by a weighted sum over a small subset of atoms. In this work we propose a novel, fully-nonlocal, energy-based formulation of the QC method with support for legacy and new summation rules through a general energy-sampling scheme. Our formulation does not conceptually differentiate between atomistic and coarse-grained regions and thus allows for seamless bridging without domain-coupling interfaces. Within this structure, we introduce a new class of summation rules which leverage the affine kinematics of this QC formulation to most accurately integrate thermodynamic quantities of interest. By comparing this new class of summation rules to commonly-employed rules through analysis of energy and spurious force errors, we find that the new rules produce no residual or spurious force artifacts in the large-element limit under arbitrary affine deformation, while allowing us to seamlessly bridge to full atomistics. We verify that the new summation rules exhibit significantly smaller force artifacts and energy approximation errors than all comparable previous summation rules through a comprehensive suite of examples with spatially non-uniform QC discretizations in two and three dimensions. Due to the unique structure of these summation rules, we also use the new formulation to study scenarios with large regions of free surface, a class of problems previously out of reach of the QC method. Lastly, we present the key components of a high-performance, distributed-memory realization of the new method, including a novel algorithm for supporting unparalleled levels of deformation. Overall, this new formulation and implementation allows us to efficiently perform simulations containing an unprecedented number of degrees of freedom with low approximation error.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of transmission matrices and lumped parameter models for describing continuous systems is the subject of this study. Non-uniform continuous systems which play important roles in practical vibration problems, e.g., torsional oscillations in bars, transverse bending vibrations of beams, etc., are of primary importance.

A new approach for deriving closed form transmission matrices is applied to several classes of non-uniform continuous segments of one dimensional and beam systems. A power series expansion method is presented for determining approximate transmission matrices of any order for segments of non-uniform systems whose solutions cannot be found in closed form. This direct series method is shown to give results comparable to those of the improved lumped parameter models for one dimensional systems.

Four types of lumped parameter models are evaluated on the basis of the uniform continuous one dimensional system by comparing the behavior of the frequency root errors. The lumped parameter models which are based upon a close fit to the low frequency approximation of the exact transmission matrix, at the segment level, are shown to be superior. On this basis an improved lumped parameter model is recommended for approximating non-uniform segments. This new model is compared to a uniform segment approximation and error curves are presented for systems whose areas very quadratically and linearly. The effect of varying segment lengths is investigated for one dimensional systems and results indicate very little improvement in comparison to the use of equal length segments. For purposes of completeness, a brief summary of various lumped parameter models and other techniques which have previously been used to approximate the uniform Bernoulli-Euler beam is a given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study is concerned with some of the properties of roll waves that develop naturally from a turbulent uniform flow in a wide rectangular channel on a constant steep slope . The wave properties considered were depth at the wave crest, depth at the wave trough, wave period, and wave velocity . The primary focus was on the mean values and standard deviations of the crest depths and wave periods at a given station and how these quantities varied with distance along the channel.

The wave properties were measured in a laboratory channel in which roll waves developed naturally from a uniform flow . The Froude number F (F = un/√ghn, un = normal velocity , hn = normal depth, g =acceleration of gravity) ranged from 3. 4 to 6. 0 for channel slopes So of . 05 and . 12 respectively . In the initial phase of their development the roll waves appeared as small amplitude waves with a continuous water surface profile . These small amplitude waves subsequently developed into large amplitude shock waves. Shock waves were found to overtake and combine with other shock waves with the result that the crest depth of the combined wave was larger than the crest depths before the overtake. Once roll waves began to develop, the mean value of the crest depths hnmax increased with distance . Once the shock waves began to overtake, the mean wave period Tav increased approximately linearly with distance.

For a given Froude number and channel slope the observed quantities h-max/hn , T' (T' = So Tav √g/hn), and the standard deviations of h-max/hn and T', could be expressed as unique functions of l/hn (l = distance from beginning of channel) for the two-fold change in hn occurring in the observed flows . A given value of h-max/hn occurred at smaller values of l/hn as the Froude number was increased. For a given value of h /hh-max/hn the growth rate of δh-max/h-maxδl of the shock waves increased as the Froude number was increased.

A laboratory channel was also used to measure the wave properties of periodic permanent roll waves. For a given Froude number and channel slope the h-max/hn vs. T' relation did not agree with a theory in which the weight of the shock front was neglected. After the theory was modified to include this weight, the observed values of h-max/hn were within an average of 6.5 percent of the predicted values, and the maximum discrepancy was 13.5 percent.

For h-max/hn sufficiently large (h-max/hn > approximately 1.5) it was found that the h-max/hn vs. T' relation for natural roll waves was practically identical to the h-max/hn vs. T' relation for periodic permanent roll waves at the same Froude number and slope. As a result of this correspondence between periodic and natural roll waves, the growth rate δh-max/h-maxδl of shock waves was predicted to depend on the channel slope, and this slope dependence was observed in the experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Constitutive modeling in granular materials has historically been based on macroscopic experimental observations that, while being usually effective at predicting the bulk behavior of these type of materials, suffer important limitations when it comes to understanding the physics behind grain-to-grain interactions that induce the material to macroscopically behave in a given way when subjected to certain boundary conditions.

The advent of the discrete element method (DEM) in the late 1970s helped scientists and engineers to gain a deeper insight into some of the most fundamental mechanisms furnishing the grain scale. However, one of the most critical limitations of classical DEM schemes has been their inability to account for complex grain morphologies. Instead, simplified geometries such as discs, spheres, and polyhedra have typically been used. Fortunately, in the last fifteen years, there has been an increasing development of new computational as well as experimental techniques, such as non-uniform rational basis splines (NURBS) and 3D X-ray Computed Tomography (3DXRCT), which are contributing to create new tools that enable the inclusion of complex grain morphologies into DEM schemes.

Yet, as the scientific community is still developing these new tools, there is still a gap in thoroughly understanding the physical relations connecting grain and continuum scales as well as in the development of discrete techniques that can predict the emergent behavior of granular materials without resorting to phenomenology, but rather can directly unravel the micro-mechanical origin of macroscopic behavior.

In order to contribute towards closing the aforementioned gap, we have developed a micro-mechanical analysis of macroscopic peak strength, critical state, and residual strength in two-dimensional non-cohesive granular media, where typical continuum constitutive quantities such as frictional strength and dilation angle are explicitly related to their corresponding grain-scale counterparts (e.g., inter-particle contact forces, fabric, particle displacements, and velocities), providing an across-the-scale basis for better understanding and modeling granular media.

In the same way, we utilize a new DEM scheme (LS-DEM) that takes advantage of a mathematical technique called level set (LS) to enable the inclusion of real grain shapes into a classical discrete element method. After calibrating LS-DEM with respect to real experimental results, we exploit part of its potential to study the dependency of critical state (CS) parameters such as the critical state line (CSL) slope, CSL intercept, and CS friction angle on the grain's morphology, i.e., sphericity, roundness, and regularity.

Finally, we introduce a first computational algorithm to ``clone'' the grain morphologies of a sample of real digital grains. This cloning algorithm allows us to generate an arbitrary number of cloned grains that satisfy the same morphological features (e.g., roundness and aspect ratio) displayed by their real parents and can be included into a DEM simulation of a given mechanical phenomenon. In turn, this will help with the development of discrete techniques that can directly predict the engineering scale behavior of granular media without resorting to phenomenology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel double-slab Nd:YAG laser, which uses face-pumped slab medium cooled by liquid with different temperatures on both sides, is proposed. The thermal distortion of wavefront caused by the non-uniform temperature distribution in the laser gain media can be self-compensated. According to the method of operation, the models of the temperature distribution and stress are presented, and the analytic solutions for the model are derived. Furthermore, the numerical simulations with pulse pumping energy of 10 J and repetition frequencies of 500 and 1000 Hz are calculated respectively for Nd:YAG laser medium. The simulation results show that the temperature gradient remains the approximative linearity, and the heat stress is within the extreme range. Then the absorption coefficient is also discussed. The result indicates that the doping concentration cannot be too large for the high repetition frequency laser. It has been proved that the high repetition frequency, high laser beam quality, and high average output power of the order of kilowatt of Nd: YAG slab laser can be achieved in this structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

报道了一种新型双板条离轴混合腔激光器。这种激光器结构通过改变传统的冷却方式和采用特殊的谐振腔设计,将使从第一块介质板条高温一侧出射的激光对称地进入另一块板条的低温一侧,从而可对由于温度分布不均匀造成的波面畸变进行一定程度的自校正,减少热效应的影响,可望提高激光器的输出功率和光束质量。利用快速傅里叶变换(FFT)对这种激光器的近场、远场以及相位等模场特性进行了数值计算。分析了波面畸变对输出光束质量的影响,并与常规双板条激光器进行了比较,结果表明这种新型双板条离轴混合腔激光器可以实现一定程度的波面畸变自补偿,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The formation of transverse modes in longitudinally pumped miniature slab lasers is investigated theoretically and experimentally. The longitudinally non-uniform gain-guiding is studied by expanding the electric field into the Hermite-Gaussian functions that satisfy boundary conditions of the resonator. Non-Gaussian transversal beam profiles in the near field are found and the beam diameter is reduced when the pump spot becomes smaller. The experimental observation agrees with the theoretical calculation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

基于衍射理论和坐标变换,采用数值模拟的方法分析了硬边非稳腔平面波导激光器的光束特性,研究了存在非均匀抽运和增益饱和时,输出激光的光束质量.在端面抽运和边缘抽运时,比较了正支和负支非稳腔的输出光束特性.结果表明:利用优化的离轴硬边非稳腔可以得到近衍射极限的输出.在相同的抽运不均匀性情况下,对于边缘抽运和端面抽运,正支非稳腔的光束质量因子M^2分别为3.9和2.3,而相同条件下负支非稳腔的M^2因子为1.8和1.7.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Técnicas não-intrusivas de medição de vazão constituem uma necessidade crescente em diversas aplicações. Atualmente, diversos estudos têm sido realizados com o objetivo de desenvolver técnicas de medição não-intrusivas que possam suprir as deficiências das técnicas existentes. Este trabalho visa desenvolver um medidor de vazão baseado no princípio de convecção forçada (termal) não-intrusivo inteligente. O medidor utiliza dois transdutores RTD comerciais do tipo PT100, um aquecido, que é responsável pela medição da velocidade de escoamento, e o outro utilizado como referência de set-point de temperatura do sensor aquecido. Uma Rede Neural é responsável por corrigir os erros de medição do instrumento. Para a avaliação do medidor construído, foi desenvolvida uma bancada de realização de ensaios, possibilitando a variação da vazão e temperatura na seção de teste. Com o intuito de prover a bancada de uma referência para comparação, foi instalado também um medidor do tipo Venturi normalizado segundo a ABNT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O processo de ocupação urbana da Baixada de Jacarepaguá a partir da década de 1970, promoveu inúmeros impactos ambientais que afetaram, de forma não uniforme, os diferentes grupos sociais, que habitam a região, e afetaram principalmente o meio ambiente, mais especificamente os recursos hídricos. A rápida e intensa ocupação urbana da região, impulsionada pela produção imobiliária, gerou inúmeros problemas ambientais, principalmente devido à precariedade nos serviços de saneamento. Diversos impactos se processam atualmente na rede de drenagem da Baixada de Jacarepaguá, os quais comprometem negativamente a qualidade de vida população que vive na região, assim como, do meio ambiente. Neste trabalho é avaliada a qualidade da água dos principais cursos dágua da bacia hidrográfica de Jacarepaguá, caracterizando o estado atual de degradação dos recursos hídricos da região a partir da análise dos dados referentes aos parâmetros de qualidade das águas, obtidos junto ao órgão ambiental estadual, no período compreendido entre os anos de 2003 e 2008. As variáveis estatísticas dos parâmetros foram determinadas, os resultados foram apresentados através dos gráficos boxplot e sua discussão foi realizada em consoante com a Resolução CONAMA 357/2005. Os cursos dágua da bacia de Jacarepaguá, em destaque aqueles avaliados neste trabalho expressam a degradação pela qual vem sofrendo em virtude das intervenções antrópicas que se projetam na bacia hidrográfica. Nota-se a partir, dos resultados para os parâmetros de qualidade de água avaliados que a poluição nos cursos dágua da baixada de Jacarepaguá que, possivelmente o principal aspecto da poluição hídrica é devido ao despejo de esgotos domésticos nos cursos dágua sem tratamento adequado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of initial soil fabric on behaviors of granular soils are investigated by using Distinct Element Method (DEM) numerical simulation. Soil specimens are represented by an assembly of non-uniform sized spheres with different initial contact normal distributions. Isotropically consolidated triaxial compression loading and extension unloading in both undrained and drained conditions are simulated for vertically- and horizontally-sheared specimens. The numerical simulation results are compared qualitatively with the published experimental data and the effects of initial soil fabric on resulting soil behaviors are discussed, including the effects of specimen reconstitution methods, effects of large preshearing, and anisotropic characteristics in undrained and drained conditions. The effects of initial soil fabric and mode of shearing on the quasi-steady state line are also investigated. The numerical simulation results can systematically explain that the observed experimental behaviors of granular soils are due principally to their conditions of the initial soil fabric. This outcome provides insights into the observed phenomena in microscopic view. © 2011 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Following a tunnel excavation in low-permeability soil, it is commonly observed that the ground surface continues to settle and ground loading on the tunnel lining changes, as the pore pressures in the ground approach a new equilibrium condition. The monitored ground response following the tunnelling under St James's Park, London, shows that the mechanism of subsurface deformation is composed of three different zones: swelling, consolidation and rigid body movement. The swelling took place in a confined zone above the tunnel crown, extending vertically to approximately 5 m above it. On the sides of the tunnel, the consolidation of the soil occurred in the zone primarily within the tunnel horizon, from the shoulder to just beneath the invert, and extending laterally to a large offset from the tunnel centreline. Above these swelling and consolidation zones the soil moved downward as a rigid body. In this study, soil-fluid coupled three-dimensional finite element analyses were performed to simulate the mechanism of long-term ground response monitored at St James's Park. An advanced critical state soil model, which can simulate the behaviour of London Clay in both drained and undrained conditions, was adopted for the analyses. The analysis results are discussed and compared with the field monitoring data. It is found that the observed mechanism of long-term subsurface ground and tunnel lining response at St James's Park can be simulated accurately only when stiffness anisotropy, the variation of permeability between different units within the London Clay and non-uniform drainage conditions for the tunnel lining are considered. This has important implications for future prediction of the long-term behaviour of tunnels in clays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Submarines are efficient sources of low frequency radiated noise due to the vibrations induced by the rotation of the propeller in a non uniform wake. In this work the possibility of using inertial actuators to reduce the far field sound pressure is investigated. The submerged vessel is modelled as a cylindrical shell with two conical end caps. Complicating effects such as ring stiffeners, bulkheads and the fluid loading are taken into account. A harmonic radial force is transmitted from the propeller to the hull through the stern end cone and it is tonal at the blade passing frequency (rotational speed of the shaft multiplied by the number of blades). The actuators are attached at the inside of the prow end cone to form a circumferential array. Both Active Vibration Control (AVC) and Active Structural Acoustic Control (ASAC) are analysed and it is shown that the inertial actuators can significantly reduce the far field sound pressure.