867 resultados para Non-native mammalian predator


Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has traditionally been considered that areas with high natural species richness are likely to be more resistant to non-indigenous species than those with lower numbers of species. However, this theory has been the subject of a debate over the last decade, since some studies have shown the opposite trend. In the present study, a macroalgal survey was carried out at 24 localities in Northern Ireland and southern England, using a quadrat approach in the lower littoral. The two opposing hypotheses were tested (negative versus positive relationship between native and non-indigenous species richness) in this marine environment. The effect of the presence of 'impacts', potential sources of disturbance and species introduction (e.g. marina, harbour or aquaculture), was also tested. A positive relationship was found between the number of non-indigenous species and the native species richness at the three different scales tested (quadrats, sites and localities). At no scale did a richer native assemblage appear to restrict the establishment of introduced species. The analyses revealed greater species richness and different community composition, as well as more non-indigenous species, in southern England relative to Northern Ireland. The presence of the considered impacts had an effect on the community composition and species richness in southern England but not in Northern Ireland. Such impacts had no effect on the non-indigenous species richness in either area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Emergent multiple predator effects (MPEs) might radically alter predictions of predatory impact that are based solely on the impact of individuals. In the context of biological invasions, determining if and how the individual-level impacts of invasive predators relates to their impacts in multiple-individual situations will inform understanding of how such impacts might propagate through recipient communities. Here, we use functional responses (the relationship between prey consumption rate and prey density) to compare the impacts of the invasive freshwater mysid crustacean Hemimysis anomala with a native counterpart Mysis salemaai when feeding on basal cladoceran prey (i) as individuals, (ii) in conspecific groups and (iii) in conspecific groups in the presence of a higher fish predator, Gasterosteus aculeatus. In the absence of the higher predator, the invader consumed significantly more basal prey than the native, and consumption was additive for both mysid species - that is, group consumption was predictable from individual-level consumption. Invaders and natives were themselves equally susceptible to predation when feeding with the higher fish predator, but an MPE occurred only between the natives and higher predator, where consumption of basal prey was significantly reduced. In contrast, consumption by the invaders and higher predator remained additive. The presence of a higher predator serves to exacerbate the existing difference in individual-level consumption between invasive and native mysids. We attribute the mechanism responsible for the MPE associated with the native to a trait-mediated indirect interaction, and further suggest that the relative indifference to predator threat on the part of the invader contributes to its success and impacts within invaded communities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Parasites play pivotal roles in structuring communities, often via indirect interactions with non-host species. These effects can be density-mediated (through mortality) or trait-mediated (behavioural, physiological and developmental), and may be crucial to population interactions, including biological invasions. For instance, parasitism can alter intraguild predation (IGP) between native and invasive crustaceans, reversing invasion outcomes. Here, we use mathematical models to examine how parasite-induced trait changes influence the population dynamics of hosts that interact via IGP. We show that trait-mediated indirect interactions impart keystone effects, promoting or inhibiting host coexistence. Parasites can thus have strong ecological impacts, even if they have negligible virulence, underscoring the need to consider trait-mediated effects when predicting effects of parasites on community structure in general and biological invasions in particular.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sensing the chemical warnings present in the environment is essential for species survival. In mammals, this form of danger communication occurs via the release of natural predator scents that can involuntarily warn the prey or by the production of alarm pheromones by the stressed prey alerting its conspecifics. Although we previously identified the olfactory Grueneberg ganglion as the sensory organ through which mammalian alarm pheromones signal a threatening situation, the chemical nature of these cues remains elusive. We here identify, through chemical analysis in combination with a series of physiological and behavioral tests, the chemical structure of a mouse alarm pheromone. To successfully recognize the volatile cues that signal danger, we based our selection on their activation of the mouse olfactory Grueneberg ganglion and the concomitant display of innate fear reactions. Interestingly, we found that the chemical structure of the identified mouse alarm pheromone has similar features as the sulfur-containing volatiles that are released by predating carnivores. Our findings thus not only reveal a chemical Leitmotiv that underlies signaling of fear, but also point to a double role for the olfactory Grueneberg ganglion in intraspecies as well as interspecies communication of danger.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The canonical pathway of regulation of the germinal centre kinase (GCK) III subgroup member, mammalian Sterile20-related kinase 3 (MST3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr178-), induction of Ser-/Thr-protein kinase activity and nuclear localisation. We identified an alternative ‘non-canonical’ pathway of MST3 activation (regulated primarily through dephosphorylation) which may also be applicable to other GCKIII (and GCKVI) subgroup members. In the basal state, inactive MST3 co-immunoprecipitated with the Golgi protein, GOLGA2/gm130. Activation of MST3 by calyculin A (a protein Ser-/Thr- phosphatase 1/2A inhibitor) stimulated (auto)phosphorylation of MST3(Thr178-) in the catalytic domain with essentially simultaneous cis-autophosphorylation of MST3(Thr328-) in the regulatory domain, an event also requiring the MST3(341-376) sequence which acts as a putative docking domain. MST3(Thr178-) phosphorylation increased MST3 kinase activity but this activity was independent of MST3(Thr328-) phosphorylation. Interestingly, MST3(Thr328-) lies immediately C-terminal to a STRAD pseudokinase-like site recently identified as being involved in binding of GCKIII/GCKVI members to MO25 scaffolding proteins. MST3(Thr178- /Thr328-) phosphorylation was concurrent with dissociation of MST3 from GOLGA2/gm130 and association of MST3 with MO25, and MST3(Thr328-) phosphorylation was necessary for formation of the activated MST3-MO25 holocomplex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Robotic multiwell planar patch-clamp has become common in drug development and safety programs because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. It has not, however, been adopted significantly in other important areas of ion channel research, where conventional patch-clamp remains the favored method. Here, we show the wider potential of the multiwell approach with the ability for efficient intracellular solution exchange, describing protocols and success rates for recording from a range of native and primary mammalian cells derived from blood vessels, arthritic joints and the immune and central nervous systems. The protocol involves preparing a suspension of single cells to be dispensed robotically into 4-8 microfluidic chambers each containing a glass chip with a small aperture. Under automated control, giga-seals and whole-cell access are achieved followed by preprogrammed routines of voltage paradigms and fast extracellular or intracellular solution exchange. Recording from 48 chambers usually takes 1-6 h depending on the experimental design and yields 16-33 cell recordings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immunoglobulin E forms a minor component of serum antibody in mammals. In tissues IgE is bound by FcvarepsilonRI receptors on the surface of mast cells and mediates their release of inflammatory substances in response to antigen. IgE and mast cells have a central role in immunity to parasites and the pathogenesis of allergic diseases in horses and other mammals. This paper describes the production of several novel monoclonal antibodies that detect native equine IgE in immunohistology, ELISA and Western blotting. An antigen capture ELISA to quantify equine IgE in serum has been developed using two of these antibodies. The mean serum IgE concentration of a group of 122 adult horses was 23,523ng/ml with a range of 425-82,610ng/ml. Total serum IgE of healthy horses was compared with that of horses with insect bite dermal hypersensitivity (IBDH) an allergic reaction to the bites of blood feeding insects of Culicoides or Simulium spp. IBDH does not occur in Iceland where Culicoides spp. are absent, but following importation into mainland Europe native Icelandic horses have an exceptionally high incidence of this condition. In the present study Icelandic horses with IBDH had significantly higher total IgE than healthy Icelandic horse controls (P<0.05). By contrast in horses of other breeds the difference in total serum IgE between those affected with IBDH and healthy controls was not statistically significant. Total serum IgE was also monitored in a cohort of Icelandic horses prior to import into Switzerland and for a period of 3 years thereafter. High levels of serum IgE were present in all horses at the start of the study but dropped in the first year after import. Thereafter the total serum IgE remained low in Icelandic horses that remained healthy but rose significantly (P<0.05) in those that developed IBDH. These results support the conclusion that IBDH is a type I hypersensitivity response to insect allergens but indicate that IBDH in Icelandic horses may have a different pathogenesis from the same condition in other breeds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The arginine-vasopressin 1a receptor has been identified as a key determinant for social behaviour in Microtus voles, humans and other mammals. Nevertheless, the genetic bases of complex phenotypic traits like differences in social and mating behaviour among species and individuals remain largely unknown. Contrary to previous studies focusing on differences in the promotor region of the gene, we investigate here the level of functional variation in the coding region (exon 1) of this locus. RESULTS: We detected high sequence diversity between higher mammalian taxa as well as between species of the genus Microtus. This includes length variation and radical amino acid changes, as well as the presence of distinct protein variants within individuals. Additionally, negative selection prevails on most parts of the first exon of the arginine-vasopressin receptor 1a (avpr1a) gene but it contains regions with higher rates of change that harbour positively selected sites. Synonymous and non-synonymous substitution rates in the avpr1a gene are not exceptional compared to other genes, but they exceed those found in related hormone receptors with similar functions. DISCUSSION: These results stress the importance of considering variation in the coding sequence of avpr1a in regards to associations with life history traits (e.g. social behaviour, mating system, habitat requirements) of voles, other mammals and humans in particular.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nervous system maintains a delicate balance between excitation and inhibition, partly through the complex interplay between voltage-gated sodium and potassium ion channels. Because K+ channel blockade or gene deletion causes hyperexcitability, it is generally assumed that increases in K+ channel gene expression should reduce neuronal network excitability. We have tested this hypothesis by creating a transgenic mouse that expresses a Shaker-type K+ channel gene. Paradoxically, we find that addition of the extra K+ channel gene results in a hyperexcitable rather than a hypoexcitable phenotype. The presence of the transgene leads to a complex deregulation of endogenous Shaker genes in the adult central nervous system as well as an increase in network excitability that includes spontaneous cortical spike and wave discharges and a lower threshold for epileptiform bursting in isolated hippocampal slices. These data suggest that an increase in K+ channel gene dosage leads to dysregulation of normal K+ channel gene expression, and it may underlie a mechanism contributing to the pathogenesis of human aneuploidies such as Down syndrome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The RAD51 protein has been shown to participate in homologous recombination by promoting ATP-dependent homologous pairing and strand transfer reactions. In the present study, we have investigated the possible involvement of RAD51 in non-homologous recombination. We demonstrate that overexpression of CgRAD51 enhances the frequency of spontaneous non-homologous recombination in the hprt gene of Chinese hamster cells. However, the rate of non-homologous recombination induced by the topoisomerase inhibitors campothecin and etoposide was not altered by overexpression of RAD51. These results indicate that the RAD51 protein may perform a function in connection with spontaneous non-homologous recombination that is not essential to or not rate-limiting for non-homologous recombination induced by camptothecin or etoposide. We discuss the possibility that the role played by RAD51 in non-homologous recombination observed here may not be linked to non-homologous end-joining.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cells of vertebrates remove DNA double-strand breaks (DSBs) from their genome predominantly utilizing a fast, DNA-PKcs-dependent form of non-homologous end joining (D-NHEJ). Mutants with inactive DNA-PKcs remove the majority of DNA DSBs utilizing a slow, DNA-PKcs-independent pathway that does not utilize genes of the RAD52 epistasis group, is error-prone and can therefore be classified as a form of NHEJ (termed basic or B-NHEJ). We studied the role of DNA ligase IV in these pathways of NHEJ. Although biochemical studies show physical and functional interactions between the DNA-PKcs/Ku and the DNA ligase IV/Xrcc4 complexes suggesting operation within the same pathway, genetic evidence to support this notion is lacking in mammalian cells. Primary human fibroblasts (180BR) with an inactivating mutation in DNA ligase IV, rejoined DNA DSBs predominantly with slow kinetics similar to those observed in cells deficient in DNA-PKcs, or in wild-type cells treated with wortmannin to inactivate DNA-PK. Treatment of 180BR cells with wortmannin had only a small effect on DNA DSB rejoining and no effect on cell radiosensitivity to killing although it sensitized control cells to 180BR levels. This is consistent with DNA ligase IV functioning as a component of the D-NHEJ, and demonstrates the unperturbed operation of the DNA-PKcs-independent pathway (B-NHEJ) at significantly reduced levels of DNA ligase IV. In vitro, extracts of 180BR cells supported end joining of restriction endonuclease-digested plasmid to the same degree as extracts of control cells when tested at 10 mM Mg2+. At 0.5 mM Mg2+, where only DNA ligase IV is expected to retain activity, low levels of end joining (∼10% of 10 mM) were seen in the control but there was no detectable activity in 180BR cells. Antibodies raised against DNA ligase IV did not measurably inhibit end joining at 10 mM Mg2+ in either cell line. Thus, in contrast to the situation in vivo, end joining in vitro is dominated by pathways with properties similar to B-NHEJ that do not display a strong dependence on DNA ligase IV, with D-NHEJ retaining only a limited contribution. The implications of these observations to studies of NHEJ in vivo and in vitro are discussed.