971 resultados para Non-linear Response


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Corrosion of reinforcement bars in concrete structures is the most significant deterioration mechanism in these structures. Corrosion is extremely difficult to predict and, consequently, can be regarded as an unpredictable event. Following this, robustness assessment methods can be employed to define the susceptibility of a structure to corrosion. In this work, robustness is measured in terms of the remaining safety of a deteriorated structure. The proposed methodology is illustrated by means of a reinforced concrete (RC) slab subjected to dead and live loads. The performance of the corroded slab is evaluated using non-linear analysis. The reliability index is adopted to assess the safety of the deteriorated structure. To compute the reliability index a strategy combining the First Order Reliability Method (FORM) and the Response Surface Method (RSM) is used.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new environmentally friendly Au nanoparticles (Au NPs) synthesis in glycerol by using ultraviolet irradiation and without extra-added stabilizers is described. The synthesis proposed in this work may impact on the non-polluting production of noble nanoparticles with simple chemicals normally found in standard laboratories. These Au NPs were used to modify a carbon paste electrode (CPE) without having to separate them from the reaction medium. This green electrode was used as an electrochemical sensor for the nitrite detection in water. At the optimum conditions the green sensor presented a linear response in the 2.0×10−7–1.5×10−5 M concentration range, a good detection sensitivity (0.268 A L mol−1), and a low detection limit of 2.0×10−7 M of nitrite. The proposed modified green CPE was used to determine nitrite in tap water samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Civil

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main purpose of the present dissertation is the simulation of the response of fibre grout strengthened RC panels when subjected to blast effects using the Applied Element Method, in order to validate and verify its applicability. Therefore, four experimental models, three of which were strengthened with a cement-based grout, each reinforced by one type of steel reinforcement, were tested against blast effects. After the calibration of the experimental set-up, it was possible to obtain and compare the response to the blast effects of the model without strengthening (reference model), and a fibre grout strengthened RC panel (strengthened model). Afterwards, a numerical model of the reference model was created in the commercial software Extreme Loading for Structures, which is based on the Applied Element Method, and calibrated to the obtained experimental results, namely to the residual displacement obtained by the experimental monitoring system. With the calibration verified, it is possible to assume that the numerical model correctly predicts the response of fibre grout RC panels when subjected to blast effects. In order to verify this assumption, the strengthened model was modelled and subjected to the blast effects of the corresponding experimental set-up. The comparison between the residual and maximum displacements and the bottom surface’s cracking obtained in the experimental and the numerical tests yields a difference of 4 % for the maximum displacements of the reference model, and a difference of 4 and 10 % for the residual and maximum displacements of the strengthened model, respectively. Additionally, the cracking on the bottom surface of the models was similar in both methods. Therefore, one can conclude that the Applied ElementMethod can correctly predict and simulate the response of fibre grout strengthened RC panels when subjected to blast effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work aimed to assess the early-age evolution of E-modulus of epoxy adhesives used for Fibre-Reinforced Polymer (FRP) strengthening applications. The study involved adapting an existing technique devised for continuous monitoring of concrete stiffness since casting, called EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) for evaluation of epoxy stiffness. Furthermore, monotonic tensile tests according to ISO standards and cyclic tensile tests were carried out at several ages. A comparison between the obtained results was performed in order to better understand the performance of the several techniques in the assessment of stiffness of epoxy resins. When compared to the other methodologies, the method for calculation of E-modulus recommended by ISO standard led to lower values, since in the considered strain interval, the adhesive had a non-linear stress–strain relationship. The EMM-ARM technique revealed its capability in clearly identifying the hardening kinetics of epoxy adhesives, measuring the material stiffness growth during the entire curing period. At very early ages the values of Young׳s modulus obtained with quasi-static tests were lower than the values collected by EMM-ARM, due to the fact that epoxy resin exhibited a significant visco-elastic behaviour.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Existing masonry structures are usually associated to a high seismic vulnerability, mainly due to the properties of the materials, weak connections between floors and load-bearing walls, high mass of the masonry walls and flexibility of the floors. For these reasons, the seismic performance of existing masonry structures has received much attention in the last decades. This study presents the parametric analysis taking into account the deviations on features of the gaioleiro buildings - Portuguese building typology. The main objective of the parametric analysis is to compare the seismic performance of the structure as a function of the variations of its properties with respect to the response of a reference model. The parametric analysis was carried out for two types of structural analysis, namely for the non-linear dynamic analysis with time integration and for the pushover analysis with distribution of forces proportional to the inertial forces of the structure. The Young's modulus of the masonry walls, Young's modulus of the timber floors, the compressive and tensile non-linear properties (strength and fracture energy) were the properties considered in both type of analysis. Additionally, in the dynamic analysis, the influences of the vis-cous damping and of the vertical component of the earthquake were evaluated. A pushover analysis proportional to the modal displacement of the first mode in each direction was also carried out. The results shows that the Young's modulus of the masonry walls, the Young's modulus of the timber floors and the compressive non-linear properties are the pa-rameters that most influence the seismic performance of this type of tall and weak existing masonry structures. Furthermore, it is concluded that that the stiffness of the floors influences significantly the strength capacity and the collapse mecha-nism of the numerical model. Thus, a study on the strengthening of the floors was also carried out. The increase of the thickness of the timber floors was the strengthening technique that presented the best seismic performance, in which the reduction of the out-of-plane displacements of the masonry walls is highlighted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For any vacuum initial data set, we define a local, non-negative scalar quantity which vanishes at every point of the data hypersurface if and only if the data are Kerr initial data. Our scalar quantity only depends on the quantities used to construct the vacuum initial data set which are the Riemannian metric defined on the initial data hypersurface and a symmetric tensor which plays the role of the second fundamental form of the embedded initial data hypersurface. The dependency is algorithmic in the sense that given the initial data one can compute the scalar quantity by algebraic and differential manipulations, being thus suitable for an implementation in a numerical code. The scalar could also be useful in studies of the non-linear stability of the Kerr solution because it serves to measure the deviation of a vacuum initial data set from the Kerr initial data in a local and algorithmic way.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado em Optometria Avançada

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Elevated high-sensitivity C-reactive protein (hs-CRP) concentration is associated with an increased risk of cardiovascular disease but this association seems to be largely mediated via conventional cardiovascular risk factors. In particular, the association between hs-CRP and obesity has been extensively demonstrated and correlations are stronger in women than men. We used fractional polynomials-a method that allows flexible modeling of non linear relations-to investigate the dose/response mathematical relationship between hs-CRP and several indicators of adiposity in Caucasians (Switzerland) and Africans (Seychelles) surveyed in two population-based studies. This relationship was non-linear exhibiting a steeper slope for low levels of hs-CRP and a higher level in women. The observed sex difference in the relationship between hs-CRP and adiposity almost disappeared upon adjustment for leptin, suggesting that these sex differences might be partially mediated, by leptin. All these relationship were similar in Caucasians and Africans. This is the first report on a non-linear relation, stratified by gender, between hs-CRP and adiposity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inbreeding generally results in deleterious shifts in mean fitness. If the fitness response to increasing inbreeding coefficient is non-linear, this suggests a contribution of epistasis to inbreeding depression. In a cross-breeding experiment, Salathe & Ebert (2003. J. Evol. Biol. 16: 976-985) tested and found the presence of this non-linearity in Daphnia magna. They argue that epistatic interactions cause this non-linearity. We argue here that their experimental protocol does not allow disentangling the effect of synergistic epistasis from two alternative hypotheses, namely hybrid vigour and statistical non-independence of data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract (English)General backgroundMultisensory stimuli are easier to recognize, can improve learning and a processed faster compared to unisensory ones. As such, the ability an organism has to extract and synthesize relevant sensory inputs across multiple sensory modalities shapes his perception of and interaction with the environment. A major question in the scientific field is how the brain extracts and fuses relevant information to create a unified perceptual representation (but also how it segregates unrelated information). This fusion between the senses has been termed "multisensory integration", a notion that derives from seminal animal single-cell studies performed in the superior colliculus, a subcortical structure shown to create a multisensory output differing from the sum of its unisensory inputs. At the cortical level, integration of multisensory information is traditionally deferred to higher classical associative cortical regions within the frontal, temporal and parietal lobes, after extensive processing within the sensory-specific and segregated pathways. However, many anatomical, electrophysiological and neuroimaging findings now speak for multisensory convergence and interactions as a distributed process beginning much earlier than previously appreciated and within the initial stages of sensory processing.The work presented in this thesis is aimed at studying the neural basis and mechanisms of how the human brain combines sensory information between the senses of hearing and touch. Early latency non-linear auditory-somatosensory neural response interactions have been repeatedly observed in humans and non-human primates. Whether these early, low-level interactions are directly influencing behavioral outcomes remains an open question as they have been observed under diverse experimental circumstances such as anesthesia, passive stimulation, as well as speeded reaction time tasks. Under laboratory settings, it has been demonstrated that simple reaction times to auditory-somatosensory stimuli are facilitated over their unisensory counterparts both when delivered to the same spatial location or not, suggesting that audi- tory-somatosensory integration must occur in cerebral regions with large-scale spatial representations. However experiments that required the spatial processing of the stimuli have observed effects limited to spatially aligned conditions or varying depending on which body part was stimulated. Whether those divergences stem from task requirements and/or the need for spatial processing has not been firmly established.Hypotheses and experimental resultsIn a first study, we hypothesized that auditory-somatosensory early non-linear multisensory neural response interactions are relevant to behavior. Performing a median split according to reaction time of a subset of behavioral and electroencephalographic data, we found that the earliest non-linear multisensory interactions measured within the EEG signal (i.e. between 40-83ms post-stimulus onset) were specific to fast reaction times indicating a direct correlation of early neural response interactions and behavior.In a second study, we hypothesized that the relevance of spatial information for task performance has an impact on behavioral measures of auditory-somatosensory integration. Across two psychophysical experiments we show that facilitated detection occurs even when attending to spatial information, with no modulation according to spatial alignment of the stimuli. On the other hand, discrimination performance with probes, quantified using sensitivity (d'), is impaired following multisensory trials in general and significantly more so following misaligned multisensory trials.In a third study, we hypothesized that behavioral improvements might vary depending which body part is stimulated. Preliminary results suggest a possible dissociation between behavioral improvements andERPs. RTs to multisensory stimuli were modulated by space only in the case when somatosensory stimuli were delivered to the neck whereas multisensory ERPs were modulated by spatial alignment for both types of somatosensory stimuli.ConclusionThis thesis provides insight into the functional role played by early, low-level multisensory interac-tions. Combining psychophysics and electrical neuroimaging techniques we demonstrate the behavioral re-levance of early and low-level interactions in the normal human system. Moreover, we show that these early interactions are hermetic to top-down influences on spatial processing suggesting their occurrence within cerebral regions having access to large-scale spatial representations. We finally highlight specific interactions between auditory space and somatosensory stimulation on different body parts. Gaining an in-depth understanding of how multisensory integration normally operates is of central importance as it will ultimately permit us to consider how the impaired brain could benefit from rehabilitation with multisensory stimula-Abstract (French)Background théoriqueDes stimuli multisensoriels sont plus faciles à reconnaître, peuvent améliorer l'apprentissage et sont traités plus rapidement comparé à des stimuli unisensoriels. Ainsi, la capacité qu'un organisme possède à extraire et à synthétiser avec ses différentes modalités sensorielles des inputs sensoriels pertinents, façonne sa perception et son interaction avec l'environnement. Une question majeure dans le domaine scientifique est comment le cerveau parvient à extraire et à fusionner des stimuli pour créer une représentation percep- tuelle cohérente (mais aussi comment il isole les stimuli sans rapport). Cette fusion entre les sens est appelée "intégration multisensorielle", une notion qui provient de travaux effectués dans le colliculus supérieur chez l'animal, une structure sous-corticale possédant des neurones produisant une sortie multisensorielle différant de la somme des entrées unisensorielles. Traditionnellement, l'intégration d'informations multisen- sorielles au niveau cortical est considérée comme se produisant tardivement dans les aires associatives supérieures dans les lobes frontaux, temporaux et pariétaux, suite à un traitement extensif au sein de régions unisensorielles primaires. Cependant, plusieurs découvertes anatomiques, électrophysiologiques et de neuroimageries remettent en question ce postulat, suggérant l'existence d'une convergence et d'interactions multisensorielles précoces.Les travaux présentés dans cette thèse sont destinés à mieux comprendre les bases neuronales et les mécanismes impliqués dans la combinaison d'informations sensorielles entre les sens de l'audition et du toucher chez l'homme. Des interactions neuronales non-linéaires précoces audio-somatosensorielles ont été observées à maintes reprises chez l'homme et le singe dans des circonstances aussi variées que sous anes- thésie, avec stimulation passive, et lors de tâches nécessitant un comportement (une détection simple de stimuli, par exemple). Ainsi, le rôle fonctionnel joué par ces interactions à une étape du traitement de l'information si précoce demeure une question ouverte. Il a également été démontré que les temps de réaction en réponse à des stimuli audio-somatosensoriels sont facilités par rapport à leurs homologues unisensoriels indépendamment de leur position spatiale. Ce résultat suggère que l'intégration audio- somatosensorielle se produit dans des régions cérébrales possédant des représentations spatiales à large échelle. Cependant, des expériences qui ont exigé un traitement spatial des stimuli ont produits des effets limités à des conditions où les stimuli multisensoriels étaient, alignés dans l'espace ou encore comme pouvant varier selon la partie de corps stimulée. Il n'a pas été établi à ce jour si ces divergences pourraient être dues aux contraintes liées à la tâche et/ou à la nécessité d'un traitement de l'information spatiale.Hypothèse et résultats expérimentauxDans une première étude, nous avons émis l'hypothèse que les interactions audio- somatosensorielles précoces sont pertinentes pour le comportement. En effectuant un partage des temps de réaction par rapport à la médiane d'un sous-ensemble de données comportementales et électroencépha- lographiques, nous avons constaté que les interactions multisensorielles qui se produisent à des latences précoces (entre 40-83ms) sont spécifique aux temps de réaction rapides indiquant une corrélation directe entre ces interactions neuronales précoces et le comportement.Dans une deuxième étude, nous avons émis l'hypothèse que si l'information spatiale devient perti-nente pour la tâche, elle pourrait exercer une influence sur des mesures comportementales de l'intégration audio-somatosensorielles. Dans deux expériences psychophysiques, nous montrons que même si les participants prêtent attention à l'information spatiale, une facilitation de la détection se produit et ce toujours indépendamment de la configuration spatiale des stimuli. Cependant, la performance de discrimination, quantifiée à l'aide d'un index de sensibilité (d') est altérée suite aux essais multisensoriels en général et de manière plus significative pour les essais multisensoriels non-alignés dans l'espace.Dans une troisième étude, nous avons émis l'hypothèse que des améliorations comportementales pourraient différer selon la partie du corps qui est stimulée (la main vs. la nuque). Des résultats préliminaires suggèrent une dissociation possible entre une facilitation comportementale et les potentiels évoqués. Les temps de réactions étaient influencés par la configuration spatiale uniquement dans le cas ou les stimuli somatosensoriels étaient sur la nuque alors que les potentiels évoqués étaient modulés par l'alignement spatial pour les deux types de stimuli somatosensorielles.ConclusionCette thèse apporte des éléments nouveaux concernant le rôle fonctionnel joué par les interactions multisensorielles précoces de bas niveau. En combinant la psychophysique et la neuroimagerie électrique, nous démontrons la pertinence comportementale des ces interactions dans le système humain normal. Par ailleurs, nous montrons que ces interactions précoces sont hermétiques aux influences dites «top-down» sur le traitement spatial suggérant leur occurrence dans des régions cérébrales ayant accès à des représentations spatiales de grande échelle. Nous soulignons enfin des interactions spécifiques entre l'espace auditif et la stimulation somatosensorielle sur différentes parties du corps. Approfondir la connaissance concernant les bases neuronales et les mécanismes impliqués dans l'intégration multisensorielle dans le système normale est d'une importance centrale car elle permettra d'examiner et de mieux comprendre comment le cerveau déficient pourrait bénéficier d'une réhabilitation avec la stimulation multisensorielle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The imatinib trough plasma concentration (C(min)) correlates with clinical response in cancer patients. Therapeutic drug monitoring (TDM) of plasma C(min) is therefore suggested. In practice, however, blood sampling for TDM is often not performed at trough. The corresponding measurement is thus only remotely informative about C(min) exposure. Objectives: The objectives of this study were to improve the interpretation of randomly measured concentrations by using a Bayesian approach for the prediction of C(min), incorporating correlation between pharmacokinetic parameters, and to compare the predictive performance of this method with alternative approaches, by comparing predictions with actual measured trough levels, and with predictions obtained by a reference method, respectively. Methods: A Bayesian maximum a posteriori (MAP) estimation method accounting for correlation (MAP-ρ) between pharmacokinetic parameters was developed on the basis of a population pharmacokinetic model, which was validated on external data. Thirty-one paired random and trough levels, observed in gastrointestinal stromal tumour patients, were then used for the evaluation of the Bayesian MAP-ρ method: individual C(min) predictions, derived from single random observations, were compared with actual measured trough levels for assessment of predictive performance (accuracy and precision). The method was also compared with alternative approaches: classical Bayesian MAP estimation assuming uncorrelated pharmacokinetic parameters, linear extrapolation along the typical elimination constant of imatinib, and non-linear mixed-effects modelling (NONMEM) first-order conditional estimation (FOCE) with interaction. Predictions of all methods were finally compared with 'best-possible' predictions obtained by a reference method (NONMEM FOCE, using both random and trough observations for individual C(min) prediction). Results: The developed Bayesian MAP-ρ method accounting for correlation between pharmacokinetic parameters allowed non-biased prediction of imatinib C(min) with a precision of ±30.7%. This predictive performance was similar for the alternative methods that were applied. The range of relative prediction errors was, however, smallest for the Bayesian MAP-ρ method and largest for the linear extrapolation method. When compared with the reference method, predictive performance was comparable for all methods. The time interval between random and trough sampling did not influence the precision of Bayesian MAP-ρ predictions. Conclusion: Clinical interpretation of randomly measured imatinib plasma concentrations can be assisted by Bayesian TDM. Classical Bayesian MAP estimation can be applied even without consideration of the correlation between pharmacokinetic parameters. Individual C(min) predictions are expected to vary less through Bayesian TDM than linear extrapolation. Bayesian TDM could be developed in the future for other targeted anticancer drugs and for the prediction of other pharmacokinetic parameters that have been correlated with clinical outcomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND In previous meta-analyses, tea consumption has been associated with lower incidence of type 2 diabetes. It is unclear, however, if tea is associated inversely over the entire range of intake. Therefore, we investigated the association between tea consumption and incidence of type 2 diabetes in a European population. METHODOLOGY/PRINCIPAL FINDINGS The EPIC-InterAct case-cohort study was conducted in 26 centers in 8 European countries and consists of a total of 12,403 incident type 2 diabetes cases and a stratified subcohort of 16,835 individuals from a total cohort of 340,234 participants with 3.99 million person-years of follow-up. Country-specific Hazard Ratios (HR) for incidence of type 2 diabetes were obtained after adjustment for lifestyle and dietary factors using a Cox regression adapted for a case-cohort design. Subsequently, country-specific HR were combined using a random effects meta-analysis. Tea consumption was studied as categorical variable (0, >0-<1, 1-<4, ≥ 4 cups/day). The dose-response of the association was further explored by restricted cubic spline regression. Country specific medians of tea consumption ranged from 0 cups/day in Spain to 4 cups/day in United Kingdom. Tea consumption was associated inversely with incidence of type 2 diabetes; the HR was 0.84 [95%CI 0.71, 1.00] when participants who drank ≥ 4 cups of tea per day were compared with non-drinkers (p(linear trend) = 0.04). Incidence of type 2 diabetes already tended to be lower with tea consumption of 1-<4 cups/day (HR = 0.93 [95%CI 0.81, 1.05]). Spline regression did not suggest a non-linear association (p(non-linearity) = 0.20). CONCLUSIONS/SIGNIFICANCE A linear inverse association was observed between tea consumption and incidence of type 2 diabetes. People who drink at least 4 cups of tea per day may have a 16% lower risk of developing type 2 diabetes than non-tea drinkers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Self-potentials (SP) are sensitive to water fluxes and concentration gradients in both saturated and unsaturated geological media, but quantitative interpretations of SP field data may often be hindered by the superposition of different source contributions and time-varying electrode potentials. Self-potential mapping and close to two months of SP monitoring on a gravel bar were performed to investigate the origins of SP signals at a restored river section of the Thur River in northeastern Switzerland. The SP mapping and subsequent inversion of the data indicate that the SP sources are mainly located in the upper few meters in regions of soil cover rather than bare gravel. Wavelet analyses of the time-series indicate a strong, but non-linear influence of water table and water content variations, as well as rainfall intensity on the recorded SP signals. Modeling of the SP response with respect to an increase in the water table elevation and precipitation indicate that the distribution of soil properties in the vadose zone has a very strong influence. We conclude that the observed SP responses on the gravel bar are more complicated than previously proposed semi-empiric relationships between SP signals and hydraulic head or the thickness of the vadose zone. We suggest that future SP monitoring in restored river corridors should either focus on quantifying vadose zone processes by installing vertical profiles of closely spaced SP electrodes or by installing the electrodes within the river to avoid signals arising from vadose zone processes and time-varying electrochemical conditions in the vicinity of the electrodes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper proposes an approach aimed at detecting optimal model parameter combinations to achieve the most representative description of uncertainty in the model performance. A classification problem is posed to find the regions of good fitting models according to the values of a cost function. Support Vector Machine (SVM) classification in the parameter space is applied to decide if a forward model simulation is to be computed for a particular generated model. SVM is particularly designed to tackle classification problems in high-dimensional space in a non-parametric and non-linear way. SVM decision boundaries determine the regions that are subject to the largest uncertainty in the cost function classification, and, therefore, provide guidelines for further iterative exploration of the model space. The proposed approach is illustrated by a synthetic example of fluid flow through porous media, which features highly variable response due to the parameter values' combination.