887 resultados para Non-gaussian statistical mechanics
Resumo:
Sequential Monte Carlo (SMC) methods are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. We propose a new SMC algorithm to compute the expectation of additive functionals recursively. Essentially, it is an on-line or "forward only" implementation of a forward filtering backward smoothing SMC algorithm proposed by Doucet, Godsill and Andrieu (2000). Compared to the standard \emph{path space} SMC estimator whose asymptotic variance increases quadratically with time even under favorable mixing assumptions, the non asymptotic variance of the proposed SMC estimator only increases linearly with time. We show how this allows us to perform recursive parameter estimation using an SMC implementation of an on-line version of the Expectation-Maximization algorithm which does not suffer from the particle path degeneracy problem.
Resumo:
We design a particle interpretation of Feynman-Kac measures on path spaces based on a backward Markovian representation combined with a traditional mean field particle interpretation of the flow of their final time marginals. In contrast to traditional genealogical tree based models, these new particle algorithms can be used to compute normalized additive functionals "on-the-fly" as well as their limiting occupation measures with a given precision degree that does not depend on the final time horizon. We provide uniform convergence results with respect to the time horizon parameter as well as functional central limit theorems and exponential concentration estimates. Our results have important consequences for online parameter estimation for non-linear non-Gaussian state-space models. We show how the forward filtering backward smoothing estimates of additive functionals can be computed using a forward only recursion.
An overview of sequential Monte Carlo methods for parameter estimation in general state-space models
Resumo:
Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle Filters, are numerical techniques based on Importance Sampling for solving the optimal state estimation problem. The task of calibrating the state-space model is an important problem frequently faced by practitioners and the observed data may be used to estimate the parameters of the model. The aim of this paper is to present a comprehensive overview of SMC methods that have been proposed for this task accompanied with a discussion of their advantages and limitations.
Resumo:
Sequential Monte Carlo (SMC) methods are popular computational tools for Bayesian inference in non-linear non-Gaussian state-space models. For this class of models, we propose SMC algorithms to compute the score vector and observed information matrix recursively in time. We propose two different SMC implementations, one with computational complexity $\mathcal{O}(N)$ and the other with complexity $\mathcal{O}(N^{2})$ where $N$ is the number of importance sampling draws. Although cheaper, the performance of the $\mathcal{O}(N)$ method degrades quickly in time as it inherently relies on the SMC approximation of a sequence of probability distributions whose dimension is increasing linearly with time. In particular, even under strong \textit{mixing} assumptions, the variance of the estimates computed with the $\mathcal{O}(N)$ method increases at least quadratically in time. The $\mathcal{O}(N^{2})$ is a non-standard SMC implementation that does not suffer from this rapid degrade. We then show how both methods can be used to perform batch and recursive parameter estimation.
Resumo:
The statistical-mechanics theory of the passive scalar field convected by turbulence, developed in an earlier paper [Phys. Fluids 28, 1299 (1985)], is extended to the case of a small molecular Prandtl number. The set of governing integral equations is solved by the equation-error method. The resultant scalar-variance spectrum for the inertial range is F(k)~x−5/3/[1+1.21x1.67(1+0.353x2.32)], where x is the wavenumber scaled by Corrsin's dissipation wavenumber. This result reduces to the − (5)/(3) law in the inertial-convective range. It also approximately reduces to the − (17)/(3) law in the inertial-diffusive range, but the proportionality constant differs from Batchelor's by a factor of 3.6.
Resumo:
Classical statistical mechanics is applied to the study of a passive scalar field convected by isotropic turbulence. A complete set of independent real parameters and dynamic equations are worked out to describe the dynamic state of the passive scalar field. The corresponding Liouville equation is solved by a perturbation method based upon a Langevin–Fokker–Planck model. The closure problem is treated by a variational approach reported in earlier papers. Two integral equations are obtained for two unknown functions: the scalar variance spectrum F(k) and the effective damping coefficient (k). The appearance of the energy spectrum of the velocity field in the two integral equations represents the coupling of the scalar field with the velocity field. As an application of the theory, the two integral equations are solved to derive the inertial-convective-range spectrum, obtaining F(k)=0.61 −1/3 k−5/3. Here is the dissipation rate of the scalar variance and is the dissipation rate of the energy of the velocity field. This theoretical value of the scalar Kolmogorov constant, 0.61, is in good agreement with experiments.
Resumo:
An attempt is made to determine the form of F(x), the dimensionless function of universal nature which occurs in the energy spectrum for the universal equilibrium range of fully developed turbulence, by the method of statistical mechanics without introducing any parameter of semiempirical nature. Then, the validity of the variational approach to the closure problem of turbulence theory is tested by applying it to the study of the universal equilbrium range of turbulence.
Resumo:
A new method is proposed to solve the closure problem of turbulence theory and to drive the Kolmogorov law in an Eulerian framework. Instead of using complex Fourier components of velocity field as modal parameters, a complete set of independent real parameters and dynamic equations are worked out to describe the dynamic states of a turbulence. Classical statistical mechanics is used to study the statistical behavior of the turbulence. An approximate stationary solution of the Liouville equation is obtained by a perturbation method based on a Langevin-Fokker-Planck (LFP) model. The dynamic damping coefficient eta of the LFP model is treated as an optimum control parameter to minimize the error of the perturbation solution; this leads to a convergent integral equation for eta to replace the divergent response equation of Kraichnan's direct-interaction (DI) approximation, thereby solving the closure problem without appealing to a Lagrangian formulation. The Kolmogorov constant Ko is evaluated numerically, obtaining Ko = 1.2, which is compatible with the experimental data given by Gibson and Schwartz, (1963).
Resumo:
The determination of the energy levels and the probabilities of transition between them, by the formal analysis of observed electronic, vibrational, and rotational band structures, forms the direct goal of all investigations of molecular spectra, but the significance of such data lies in the possibility of relating them theoretically to more concrete properties of molecules and the radiation field. From the well developed electronic spectra of diatomic molecules, it has been possible, with the aid of the non-relativistic quantum mechanics, to obtain accurate moments of inertia, molecular potential functions, electronic structures, and detailed information concerning the coupling of spin and orbital angular monenta with the angular momentum of nuclear rotation. The silicon fluori1e molecule has been investigated in this laboratory, and is found to emit bands whose vibrational and rotational structures can be analyzed in this detailed fashion.
Like silicon fluoride, however, the great majority of diatomic molecules are formed only under the unusual conditions of electrical discharge, or in high temperature furnaces, so that although their spectra are of great theoretical interest, the chemist is eager to proceed to a study of polyatomic molecules, in the hope that their more practically interesting structures might also be determined with the accuracy and assurance which characterize the spectroscopic determinations of the constants of diatomic molecules. Some progress has been made in the determination of molecule potential functions from the vibrational term values deduced from Raman and infrared spectra, but in no case can the calculations be carried out with great generality, since the number of known term values is always small compared with the total number of potential constants in even so restricted a potential function as the simple quadratic type. For the determination of nuclear configurations and bond distances, however, a knowledge of the rotational terms is required. The spectra of about twelve of the simpler polyatomic molecules have been subjected to rotational analyses, and a number of bond distances are known with considerable accuracy, yet the number of molecules whose rotational fine structure has been resolved even with the most powerful instruments is small. Consequently, it was felt desirable to investigate the spectra of a number of other promising polyatomic molecules, with the purpose of carrying out complete rotational analyses of all resolvable bands, and ascertaining the value of the unresolved band envelopes in determining the structures of such molecules, in the cases in which resolution is no longer possible. Although many of the compounds investigated absorbed too feebly to be photographed under high dispersion with the present infrared sensitizations, the location and relative intensities of their bands, determined by low dispersion measurements, will be reported in the hope that these compounds may be reinvestigated in the future with improved techniques.
Resumo:
Disorder and interactions both play crucial roles in quantum transport. Decades ago, Mott showed that electron-electron interactions can lead to insulating behavior in materials that conventional band theory predicts to be conducting. Soon thereafter, Anderson demonstrated that disorder can localize a quantum particle through the wave interference phenomenon of Anderson localization. Although interactions and disorder both separately induce insulating behavior, the interplay of these two ingredients is subtle and often leads to surprising behavior at the periphery of our current understanding. Modern experiments probe these phenomena in a variety of contexts (e.g. disordered superconductors, cold atoms, photonic waveguides, etc.); thus, theoretical and numerical advancements are urgently needed. In this thesis, we report progress on understanding two contexts in which the interplay of disorder and interactions is especially important.
The first is the so-called “dirty” or random boson problem. In the past decade, a strong-disorder renormalization group (SDRG) treatment by Altman, Kafri, Polkovnikov, and Refael has raised the possibility of a new unstable fixed point governing the superfluid-insulator transition in the one-dimensional dirty boson problem. This new critical behavior may take over from the weak-disorder criticality of Giamarchi and Schulz when disorder is sufficiently strong. We analytically determine the scaling of the superfluid susceptibility at the strong-disorder fixed point and connect our analysis to recent Monte Carlo simulations by Hrahsheh and Vojta. We then shift our attention to two dimensions and use a numerical implementation of the SDRG to locate the fixed point governing the superfluid-insulator transition there. We identify several universal properties of this transition, which are fully independent of the microscopic features of the disorder.
The second focus of this thesis is the interplay of localization and interactions in systems with high energy density (i.e., far from the usual low energy limit of condensed matter physics). Recent theoretical and numerical work indicates that localization can survive in this regime, provided that interactions are sufficiently weak. Stronger interactions can destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition is relevant to questions of thermalization in isolated quantum systems: it separates a many-body localized phase, in which localization prevents transport and thermalization, from a conducting (“ergodic”) phase in which the usual assumptions of quantum statistical mechanics hold. Here, we present evidence that many-body localization also occurs in quasiperiodic systems that lack true disorder.
Resumo:
The feedback coding problem for Gaussian systems in which the noise is neither white nor statistically independent between channels is formulated in terms of arbitrary linear codes at the transmitter and at the receiver. This new formulation is used to determine a number of feedback communication systems. In particular, the optimum linear code that satisfies an average power constraint on the transmitted signals is derived for a system with noiseless feedback and forward noise of arbitrary covariance. The noisy feedback problem is considered and signal sets for the forward and feedback channels are obtained with an average power constraint on each. The general formulation and results are valid for non-Gaussian systems in which the second order statistics are known, the results being applicable to the determination of error bounds via the Chebychev inequality.
Resumo:
The formation of transverse modes in longitudinally pumped miniature slab lasers is investigated theoretically and experimentally. The longitudinally non-uniform gain-guiding is studied by expanding the electric field into the Hermite-Gaussian functions that satisfy boundary conditions of the resonator. Non-Gaussian transversal beam profiles in the near field are found and the beam diameter is reduced when the pump spot becomes smaller. The experimental observation agrees with the theoretical calculation.
Resumo:
O objetivo deste estudo foi avaliar a dissolução do tecido pulpar pelo NaOCl contendo em sua composição agentes redutores da tensão superfical (Chlor-Xtra) quando comparados ao NaOCl convencional. Com esta finalidade 44 dentes unirradiculares humanos com tecido pulpar preservado em solução de formol a 10% foram agrupados em 22 pares de acordo com a semelhança de sua anatomia interna previamente avaliada por radiografias. Os canais foram instrumentados com sistema Protaper Universal e todo o processo de irrigação teve, além do tempo, seu volume e fluxo controlado por meio automatizado por meio do sistema Vatea Endodontic Iirrigation Device. Após cada canal que compunha um par ter sido instrumentado empregando-se uma das diferentes soluções testadas, as quais foram previamente avaliadas quanto a sua tensão superficial, ambos foram devidamente preparados e enviados para processamento e análise histológica. Cortes a 0,5, 1,2,3 e 4mm do ápice foram realizados, corados e fotografados. As imagens foram analisadas por meio do programa AxioVision a fim de estabelecer o percentual de tecido remanescente em relação à área total do canal nos segmentos estudados. As análises referentes a tensão superficial revelaram que o Chlor-Xtra demonstrou possuir significativamente menor tensão superficial quando comparado ao NaOCL convencional (p>0,05). A análise estatística por meio do test T student das áreas dos canais, demonstrou que o pareamento das amostras foi eficiente entre os grupo NaOCl e Chlor-Xtra (p>0,05). Em relação ao Percentual de Tecido Remanescente (PTR), os resultados revelaram por meio de análise feita pelo teste Kruskal-Wallis e o teste de correlação de Spearman que o nível de corte influencia significantemente o PTR (P<0,05).Por fim, o teste de Mann-Whitney indicou que o PTR não é influenciado pela solução irrigadora utilizada (P>0,05). A partir da análise dos resultados foi possível concluir que quanto mais apicalmente foi o nível de corte histológico dos canais estudados, maior foi o percentual de tecido pulpar remanescente independentemente da solução utilizada, portanto.não houve diferença significativa na qualidade do debridamento produzido pelas duas soluções testadas, desta forma indicando que a presença de agentes modificadores da tensão adicionados ao NaOCl não foi capaz de superar os resultados obtidos por soluções de NaOCl convencionais.