974 resultados para Nociceptive modulation
Resumo:
Central angiotensin II (AngII) stimulates water and salt solution intake. Pretreatment with low-dose mineralocorticoid (DOCA) enhances this AngII-induced intake of salt solutions (the synergy theory) in Wistar and Sprague Dawley rats but not in Fischer rats. This response is mediated via the AT-1 receptor. Electrophysiological experiments using iontophoretic application of AngII and the AT-1 receptor-specific non-peptide antagonist losartan showed excitation of neurons in the preoptic/medial septum region of urethane-anesthetized male Wistar rats. DOCA pretreatment further enhances this neuronal excitation in response to AngII and reduces the responses to losartan. This generated the hypothesis that DOCA-enhanced AngII-induced neuronal excitation is the neural support for the synergy theory. AT-2 receptors modulate these intake responses depending on sodium in the diet, and diuretic-induced dehydration during pregnancy produces a higher salt intake in the offspring. AngII-induced salt and water intakes were tested in offspring from Sprague Dawley mothers with only 1.8% NaCl to drink in which half were treated with furosemide. The important observations were a) the AT-1 antagonist alone suppressed intakes in offspring from mothers not treated with furosemide, b) both AT-1 and AT-2 antagonists suppressed intakes in offspring from furosemide-treated mothers, and c) combined administration of AT-1 and AT-2 antagonists greatly suppressed water intake in offspring from mothers not treated with furosemide. These results suggest that AT-1 and AT-2 receptors have variable properties (receptor number and/or second messengers). Furthermore, the activity and function of these central AngII receptors depend on the background mineralocorticoid levels. The exact mechanism of this influence, however, remains to be determined.
Resumo:
Our objective was to characterize the modulation of the activity of Saccharomyces cerevisiae alkaline phosphatases (ALPs) by classic inhibitors of ALP activity, cholesterol and steroid hormones, in order to identify catalytic similarities between yeast and mammalian ALPs. S. cerevisiae expresses two ALPs, coded for by the PHO8 and PHO13 genes. The product of the PHO8 gene is repressible by Pi in the medium. ALP activity from yeast (grown in low or high phosphate medium) homogenates was determined with p-nitrophenylphosphate as substrate, pH 10.4 (lPiALP or hPiALP, respectively). Activation of hPiALP was observed with 5 mM L-amino acids (L-homoarginine _ 186%, L-leucine _ 155% and L-phenylalanine - 168%) and with 1 mM levamisole (122%; percentage values, in comparison to control, of recovered activity). EDTA (5 mM) and vanadate (1 mM) distinctly inhibited hPiALP (2 and 20%, respectively). L-homoarginine (5 mM) had a lower activating effect on lPiALP (166%) and was the strongest hPiALP activator. Corticosterone (5 mM) inhibited hPiALP to 90%, but no effect was observed in low phosphate medium. Cholesterol, ß-estradiol and progesterone also had different effects on lPiALP and hPiALP. A concentration-dependent activation of lPiALP minus hPiALP was evident with all three compounds, most especially with ß-estradiol and cholesterol. These results do not allow us to identify similarities of the behavior of S. cerevisiae ALPs and any of the mammalian ALPs but allow us to raise the hypothesis of differential regulation of S. cerevisiae ALPs by L-homoarginine, ß-estradiol and cholesterol and of using these compounds to discriminate between S. cerevisiae lPiALP and hPiALP.
Resumo:
Facial expressions of basic emotions have been widely used to investigate the neural substrates of emotion processing, but little is known about the exact meaning of subjective changes provoked by perceiving facial expressions. Our assumption was that fearful faces would be related to the processing of potential threats, whereas angry faces would be related to the processing of proximal threats. Experimental studies have suggested that serotonin modulates the brain processes underlying defensive responses to environmental threats, facilitating risk assessment behavior elicited by potential threats and inhibiting fight or flight responses to proximal threats. In order to test these predictions about the relationship between fearful and angry faces and defensive behaviors, we carried out a review of the literature about the effects of pharmacological probes that affect 5-HT-mediated neurotransmission on the perception of emotional faces. The hypothesis that angry faces would be processed as a proximal threat and that, as a consequence, their recognition would be impaired by an increase in 5-HT function was not supported by the results reviewed. In contrast, most of the studies that evaluated the behavioral effects of serotonin challenges showed that increased 5-HT neurotransmission facilitates the recognition of fearful faces, whereas its decrease impairs the same performance. These results agree with the hypothesis that fearful faces are processed as potential threats and that 5-HT enhances this brain processing.
Resumo:
Alkaline phosphatase (ALP) is important in calcification and its expression seems to be associated with the inflammatory process. We investigated the in vitro acute effects of compounds used for the prevention or treatment of cardiovascular diseases on total ALP activity from male Wistar rat heart homogenate. ALP activity was determined by quantifying, at 410 nm, the p-nitrophenol released from p-nitrophenylphosphate (substrate in Tris buffer, pH 10.4). Using specific inhibitors of ALP activity and the reverse transcription-polymerase chain reaction, we showed that the rat heart had high ALP activity (31.73 ± 3.43 nmol p-nitrophenol·mg protein-1·min-1): mainly tissue-nonspecific ALP but also tissue-specific intestinal ALP type II. Both ALP isoenzymes presented myocardial localization (striated pattern) by immunofluorescence. ALP was inhibited a) strongly by 0.5 mM levamisole, 2 mM theophylline and 2 mM aspirin (91, 77 and 84%, respectively) and b) less strongly by 2 mM L-phenylalanine, 100 mL polyphenol-rich beverages and 0.5 mM progesterone (24, 21 to 29 and 11%, respectively). β-estradiol and caffeine (0.5 and 2 mM) had no effect; 0.5 mM simvastatin and 2 mM atenolol activated ALP (32 and 36%, respectively). Propranolol (2 mM) tended to activate ALP activity and corticosterone activated (18%) and inhibited (13%) (0.5 and 2 mM, respectively). We report, for the first time, that the rat heart expresses intestinal ALP type II and has high total ALP activity. ALP activity was inhibited by compounds used in the prevention of cardiovascular pathology. ALP manipulation in vivo may constitute an additional target for intervention in cardiovascular diseases.
Resumo:
To determine the effects of saturated and unsaturated fatty acids in phosphatidylcholine (PC) on macrophage activity, peritoneal lavage cells were cultured in the presence of phosphatidylcholine rich in saturated or unsaturated fatty acids (sat PC and unsat PC, respectively), both used at concentrations of 32 and 64 µM. The treatment of peritoneal macrophages with 64 µM unsat PC increased the production of hydrogen peroxide by 48.3% compared to control (148.3 ± 16.3 vs 100.0 ± 1.8%, N = 15), and both doses of unsat PC increased adhesion capacity by nearly 50%. Moreover, 64 µM unsat PC decreased neutral red uptake by lysosomes by 32.5% compared to the untreated group (67.5 ± 6.8 vs 100.0 ± 5.5%, N = 15), while both 32 and 64 µM unsat PC decreased the production of lipopolysaccharide-elicited nitric oxide by 30.4% (13.5 ± 2.6 vs 19.4 ± 2.5 µM) and 46.4% (10.4 ± 3.1 vs 19.4 ± 2.5 µM), respectively. Unsat PC did not affect anion production in non-stimulated cells or phagocytosis of unopsonized zymosan particles. A different result pattern was obtained for macrophages treated with sat PC. Phorbol 12-miristate 13-acetate-elicited superoxide production and neutral red uptake were decreased by nearly 25% by 32 and 64 µM sat PC, respectively. Sat PC did not affect nitric oxide or hydrogen peroxide production, adhesion capacity or zymosan phagocytosis. Thus, PC modifies macrophage activity, but this effect depends on cell activation state, fatty acid saturation and esterification to PC molecule and PC concentration. Taken together, these results indicate that the fatty acid moiety of PC modulates macrophage activity and, consequently, is likely to affect immune system regulation in vivo.
Resumo:
Growing consistent evidence indicates that hypofunction of N-methyl-D-aspartate (NMDA) transmission plays a pivotal role in the neuropathophysiology of schizophrenia. Hence, drugs which modulate NMDA neurotransmission are promising approaches to the treatment of schizophrenia. The aim of this article is to review clinical trials with novel compounds acting on the NMDA receptor (NMDA-R). This review also includes a discussion and translation of neuroscience into schizophrenia therapeutics. Although the precise mechanism of action of minocycline in the brain remains unclear, there is evidence that it blocks the neurotoxicity of NMDA antagonists and may exert a differential effect on NMDA signaling pathways. We, therefore, hypothesize that the effects of minocycline on the brain may be partially modulated by the NMDA-R or related mechanisms. Thus, we have included a review of minocycline neuroscience. The search was performed in the PubMed, Web of Science, SciELO, and Lilacs databases. The results of glycine and D-cycloserine trials were conflicting regarding effectiveness on the negative and cognitive symptoms of schizophrenia. D-serine and D-alanine showed a potential effect on negative symptoms and on cognitive deficits. Sarcosine data indicated a considerable improvement as adjunctive therapy. Finally, minocycline add-on treatment appears to be effective on a broad range of psychopathology in patients with schizophrenia. The differential modulation of NMDA-R neurosystems, in particular synaptic versus extrasynaptic NMDA-R activation and specific subtypes of NMDA-R, may be the key mediators of neurogenesis and neuroprotection. Thus, psychotropics modulating NMDA-R neurotransmission may represent future monotherapy or add-on treatment strategies in the treatment of schizophrenia.
Resumo:
Nutritional substances associated to some hormones enhance liver regeneration when injected intraperitoneally, being denominated hepatotrophic factors (HF). Here we verified if a solution of HF (glucose, vitamins, salts, amino acids, glucagon, insulin, and triiodothyronine) can revert liver cirrhosis and how some extracellular matrices are affected. Cirrhosis was induced for 14 weeks in 45 female Wistar rats (200 mg) by intraperitoneal injections of thioacetamide (200 mg/kg). Twenty-five rats received intraperitoneal HF twice a day for 10 days (40 mL·kg-1·day-1) and 20 rats received physiological saline. Fifteen rats were used as control. The HF applied to cirrhotic rats significantly: a) reduced the relative mRNA expression of the genes: Col-α1 (-53%), TIMP-1 (-31.7%), TGF-β1 (-57.7%), and MMP-2 (-41.6%), whereas Plau mRNA remained unchanged; b) reduced GGT (-43.1%), ALT (-17.6%), and AST (-12.2%) serum levels; c) increased liver weight (11.3%), and reduced liver collagen (-37.1%), regenerative nodules size (-22.1%), and fibrous septum thickness. Progranulin protein (immunohistochemistry) and mRNA (in situ hybridization) were found in fibrous septa and areas of bile duct proliferation in cirrhotic livers. Concluding, HF improved the histology and serum biochemistry of liver cirrhosis, with an important reduction of interstitial collagen and increased extracelullar matrix degradation by reducing profibrotic gene expression.
Resumo:
Endothelins (ETs) and sarafotoxins (SRTXs) belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L):10-h darkness (10D) was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM) and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM) increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC) and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.
Resumo:
Recent studies have reported that exogenous gangliosides, the sialic acid-containing glycosphingolipids, are able to modulate many cellular functions. We examined the effect of micelles of mono- and trisialoganglioside GM1 and GT1b on the production of reactive oxygen species by stimulated human polymorphonuclear neutrophils using different spectroscopic methods. The results indicated that exogenous gangliosides did not influence extracellular superoxide anion (O2.-) generation by polymorphonuclear neutrophils activated by receptor-dependent formyl-methionyl-leucyl-phenylalanine. However, when neutrophils were stimulated by receptor-bypassing phorbol 12-myristate 13-acetate (PMA), gangliosides above their critical micellar concentrations prolonged the lag time preceding the production in a concentration-dependent way, without affecting total extracellular O2.- generation detected by superoxide dismutase-inhibitable cytochrome c reduction. The effect of ganglioside GT1b (100 µM) on the increase in lag time was shown to be significant by means of both superoxide dismutase-inhibitable cytochrome c reduction assay and electron paramagnetic resonance spectroscopy (P < 0.0001 and P < 0.005, respectively). The observed phenomena can be attributed to the ability of ganglioside micelles attached to the cell surface to slow down PMA uptake, thus increasing the diffusion barrier and consequently delaying membrane events responsible for PMA-stimulated O2.- production.
Resumo:
Small cell lung cancer (SCLC) is an aggressive disease, representing 15% of all cases of lung cancer, has high metastatic potential and low prognosis that urgently demands the development of novel therapeutic approaches. One of the proposed approaches has been the down-regulation of BCL2, with poorly clarified and controversial therapeutic value regarding SCLC. The use of anti-BCL2 small interfering RNA (siRNA) in SCLC has never been reported. The aim of the present study was to select and test the in vitro efficacy of anti-BCL2 siRNA sequences against the protein and mRNA levels of SCLC cells, and their effects on cytotoxicity and chemosensitization. Two anti-BCL2 siRNAs and the anti-BCL2 G3139 oligodeoxynucleotide (ODN) were evaluated in SCLC cells by the simultaneous determination of Bcl-2 and viability using a flow cytometry method recently developed by us in addition to Western blot, real-time reverse-transcription PCR, and cell growth after single and combined treatment with cisplatin. In contrast to previous reports about the use of ODN, a heterogeneous and up to 80% sequence-specific Bcl-2 protein knockdown was observed in the SW2, H2171 and H69 SCLC cell lines, although without significant sequence-specific reduction of cell viability, cell growth, or sensitization to cisplatin. Our results question previous data generated with antisense ODN and supporting the present concept of the therapeutic interest in BCL2 silencing per se in SCLC, and support the growing notion of the necessity of a multitargeting molecular approach for the treatment of cancer.
Resumo:
The objective of this study was to use linear and non-linear methods to investigate cardiac autonomic modulation in healthy elderly men and women in response to a postural change from the supine to the standing position. Fourteen men (66.1 ± 3.5 years) and 10 women (65.3 ± 3.3 years) were evaluated. Beat-to-beat heart rate was recorded in the supine and standing positions. Heart rate variability was studied by spectral analysis, including both low (LFnu-cardiac sympathetic modulation (CSM) indicator) and high (HFnu-cardiac vagal modulation (CVM) indicator) frequencies in normalized units as well as the low frequency/high frequency (LF/HF) ratio. Symbolic analysis was performed using the following indexes: 0V% (CSM indicator), 1V% (CSM and CVM indicators), 2LV% (predominantly CVM indicator) and 2ULV% (CVM indicator). Shannon entropy was also calculated. Men presented higher LFnu and LF/HF ratio and lower HFnu and 1V% symbolic index (57.56, 4.14, 40.53, 45.96, respectively) than women (24.60, 0.45, 72.47, 52.69, respectively) in the supine position. Shannon entropy was higher among men (3.53) than among women (3.33) in the standing position, and also increased according to postural change in men (3.25; 3.53). During postural change, the LFnu (24.60; 49.85) and LF/HF ratio (0.45; 1.72) increased, with a concomitant decrease in HFnu (72.47; 47.56) and 2LV% (14.10; 6.95) in women. Women presented increased CSM in response to postural change and had higher CVM and lower CSM than men in the supine position. In conclusion, women in the age range studied presented a more appropriate response to a postural change than men, suggesting that cardiac autonomic modulation may be better preserved in women than in men.
Resumo:
Statins are among the most prescribed drugs in recent clinical practice. They are also known for their pleiotropic actions, which are independent of their lipid-lowering properties. The effect of lovastatin was investigated against carrageenan-induced paw edema in male Wistar rats (200-250 g) and on leukocyte migration, as measured by carrageenan-induced peritonitis in male Swiss mice (20-25 g), which are models of acute inflammation. Lovastatin (administered 1 h prior to carrageenan), at oral doses of 2, 5, and 10 mg/kg, markedly attenuated paw edema formation in rats at the 4th hour after carrageenan injection (25, 43, and 37% inhibition, respectively). Inhibitions of 20, 45 and 80% were observed in the leukocyte migration, as evaluated by carrageenan-induced peritonitis in mice with lovastatin doses of 0.5, 1 and 5 mg/kg, as compared to controls. Furthermore, lovastatin (administered 1 h before initiation) reduced the nociceptive effect of the formalin test in mice, at both phases, at doses of 2, 5, and 10 mg/kg: first phase (51, 65, and 70%, respectively) and second phase (73, 57, and 66% inhibition of licking time, respectively). The anti-nociceptive activity of lovastatin was inhibited by naloxone (3 mg/kg, sc). Lovastatin (0.01, 0.1, and 1 µg/mL) inhibited by 23, 79, and 86%, respectively, the release of myeloperoxidase from human neutrophils. Leukocyte (predominantly neutrophils) infiltration was almost completely reduced by lovastatin treatment, as observed in the model of acute paw edema with hematoxylin and eosin staining. In addition, lovastatin decreased the number of cells expressing tumor necrosis factor-α (TNF-α) and the inducible form of nitric oxide synthase (iNOS) activity. Therefore, the alterations in leukocyte activity and cytokine release could contribute to the anti-inflammatory activity of lovastatin.
Resumo:
The signaling lymphocytic activation molecule (SLAM), present on the surface of hematopoietic cells, can regulate some events of the immune responses. This modulatory action is associated with the capacity of SLAM to interact with an intracytoplasmic adapter, such as SLAM-associated protein (SAP). SLAM is constitutively expressed in most of these cells, is rapidly induced after antigenic or inflammatory stimuli, and participates in the immunological synapse. Defects in the function of the SLAM-SAP pathway contribute to immunological abnormalities, resulting in autoimmune diseases, tumors of the lymphoid tissues and inadequate responses to infectious agents. Initially, the role of SLAM was investigated using an anti-SLAM monoclonal antibody (α-SLAM mAb) identified as an agonist of the SLAM-SAP pathway, which could induce the production of interferon-γ and could redirect the immune response to a T helper 1 (Th1) cell profile. However, in this review we postulate that the SLAM-SAP pathway primarily induces a Th2 response and secondarily suppresses the Th1 response.
Resumo:
The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT1A autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT1A receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT1A receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F7,63 = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT1A receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN.
Resumo:
Enrichment of culture media with amino acids improves embryo development. However, little is known about the specific action of each amino acid during embryogenesis. The present study was undertaken to examine the effect of L-glutamine (Gln) and tryptophan (Trp) on mouse embryo hatching, expansion and viability in vitro. Blastocysts were collected from 6- to 8-week-old female BALB/c mice (N = 30) and cultured in M2 medium containing either 0.125, 0.25 or 0.5 mM Trp, 1 mM Gln, or M2 alone. Gln significantly increased (100%; P < 0.05) blastocyst hatching at 24 h compared to M2 alone or Trp; moreover, Trp inhibited blastocyst hatching when compared to M2 alone (P < 0.05) at 72 h. In contrast, the percentage of embryos reaching the state of expanded blastocyst at 48 h was significantly higher in medium with 1 mM Gln (66.6%; P < 0.05) or with 0.125 mM Trp (61.1%; P < 0.05). Unexpectedly, Trp increased the percentage of degenerated blastocysts after 48 h (67.7%; P < 0.05), while Gln preserved blastocyst viability. These results suggest that Gln may enhance blastocyst hatching, expansion and viability in vitro.