995 resultados para Network programming
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
We model the cytoskeleton as a fractal network by identifying each segment with a simple Kelvin-Voigt element with a well defined equilibrium length. The final structure retains the elastic characteristics of a solid or a gel, which may support stress, without relaxing. By considering a very simple regular self-similar structure of segments in series and in parallel, in one, two, or three dimensions, we are able to express the viscoelasticity of the network as an effective generalized Kelvin-Voigt model with a power law spectrum of retardation times L similar to tau(alpha). We relate the parameter alpha with the fractal dimension of the gel. In some regimes ( 0 < alpha < 1), we recover the weak power law behaviors of the elastic and viscous moduli with the angular frequencies G' similar to G" similar to w(alpha) that occur in a variety of soft materials, including living cells. In other regimes, we find different power laws for G' and G".
Resumo:
Comunicação apresentada na 18th Conference International of Health Promotion Hospitals & Health Services "Tackling causes and consequences of inequalities in health: contributions of health services and the HPH network", em Manchester de 14-16 de april de 2010
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Comunicação apresentada na 30th Sunbelt Social Networks Conference, em Riva del Garda, Itália, a 3 de Julho de 2010.
Resumo:
The main result of this work is a new criterion for the formation of good clusters in a graph. This criterion uses a new dynamical invariant, the performance of a clustering, that characterizes the quality of the formation of clusters. We prove that the growth of the dynamical invariant, the network topological entropy, has the effect of worsening the quality of a clustering, in a process of cluster formation by the successive removal of edges. Several examples of clustering on the same network are presented to compare the behavior of other parameters such as network topological entropy, conductance, coefficient of clustering and performance of a clustering with the number of edges in a process of clustering by successive removal.
Resumo:
A racionalização do consumo de energia elétrica é um tema que assume uma importância crescente nos dias de hoje. O elevado consumo de energia, principalmente a nível comercial/industrial, tem motivado o aparecimento de questões políticas, económico-sociais e ambientais que visam a sensibilização dos consumidores para a gestão eficiente dos seus recursos. Neste sentido, as empresas e instituições têm demonstrado interesse em encontrar soluções de gestão nas suas instalações elétricas que permitam a monitorização de indicadores e a previsão de falhas cuja ocorrência acarreta elevados custos de reparação/substituição, de paragem de produção, entre outros. O estudo aqui apresentado surge no âmbito de um projeto académico, cuja finalidade se prende com a implementação de um sistema de monitorização da qualidade e consumo de energia elétrica no Instituto Superior de Engenharia do Porto (ISEP). Baseado numa rede de dispositivos analisadores de parâmetros de energia elétrica, estes equipamentos de medição dispõem de software próprio, o GridVis, que permite o acesso remoto, através de uma rede Ethernet, aos parâmetros de energia (grandezas físicas elétricas). O sistema desenvolvido é capaz de identificar parâmetros de consumo de energia anómalos e emitir alertas, pré-programados em linguagem C++ e diagrama de blocos. Permite, por exemplo, detetar um consumo instantâneo excessivo de energia e alertar a sua ocorrência. As páginas de acesso aos parâmetros medidos por cada dispositivo são acessíveis através de uma interface gráfica desenvolvida em Adobe Flash que inclui, de uma forma simples e organizada, a informação relativa à distribuição dos dispositivos de medição. Num contexto de expansão deste projeto para outros edifícios do ISEP, a solução desenvolvida encontra-se preparada para ser adaptada em qualquer local, desde que reúna certos requisitos.
Resumo:
We derived a framework in integer programming, based on the properties of a linear ordering of the vertices in interval graphs, that acts as an edge completion model for obtaining interval graphs. This model can be applied to problems of sequencing cutting patterns, namely the minimization of open stacks problem (MOSP). By making small modifications in the objective function and using only some of the inequalities, the MOSP model is applied to another pattern sequencing problem that aims to minimize, not only the number of stacks, but also the order spread (the minimization of the stack occupation problem), and the model is tested.
Resumo:
The minimum interval graph completion problem consists of, given a graph G = ( V, E ), finding a supergraph H = ( V, E ∪ F ) that is an interval graph, while adding the least number of edges |F| . We present an integer programming formulation for solving the minimum interval graph completion problem recurring to a characteri- zation of interval graphs that produces a linear ordering of the maximal cliques of the solution graph.
Resumo:
This paper proposes a methodology to increase the probability of delivering power to any load point through the identification of new investments. The methodology uses a fuzzy set approach to model the uncertainty of outage parameters, load and generation. A DC fuzzy multicriteria optimization model considering the Pareto front and based on mixed integer non-linear optimization programming is developed in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power to all customers in the distribution network at the minimum possible cost for the system operator, while minimizing the non supplied energy cost. To illustrate the application of the proposed methodology, the paper includes a case study which considers an 33 bus distribution network.
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.
Resumo:
Power systems have been experiencing huge changes mainly due to the substantial increase of distributed generation (DG) and the operation in competitive environments. Virtual Power Players (VPP) can aggregate several players, namely a diversity of energy resources, including distributed generation (DG) based on several technologies, electric storage systems (ESS) and demand response (DR). Energy resources management gains an increasing relevance in this competitive context. This makes the DR use more interesting and flexible, giving place to a wide range of new opportunities. This paper proposes a methodology to support VPPs in the DR programs’ management, considering all the existing energy resources (generation and storage units) and the distribution network. The proposed method is based on locational marginal prices (LMP) values. The evaluation of the impact of using DR specific programs in the LMP values supports the manager decision concerning the DR use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 33-bus network with intensive use of DG.
Resumo:
Following the deregulation experience of retail electricity markets in most countries, the majority of the new entrants of the liberalized retail market were pure REP (retail electricity providers). These entities were subject to financial risks because of the unexpected price variations, price spikes, volatile loads and the potential for market power exertion by GENCO (generation companies). A REP can manage the market risks by employing the DR (demand response) programs and using its' generation and storage assets at the distribution network to serve the customers. The proposed model suggests how a REP with light physical assets, such as DG (distributed generation) units and ESS (energy storage systems), can survive in a competitive retail market. The paper discusses the effective risk management strategies for the REPs to deal with the uncertainties of the DAM (day-ahead market) and how to hedge the financial losses in the market. A two-stage stochastic programming problem is formulated. It aims to establish the financial incentive-based DR programs and the optimal dispatch of the DG units and ESSs. The uncertainty of the forecasted day-ahead load demand and electricity price is also taken into account with a scenario-based approach. The principal advantage of this model for REPs is reducing the risk of financial losses in DAMs, and the main benefit for the whole system is market power mitigation by virtually increasing the price elasticity of demand and reducing the peak demand.
Resumo:
The use of distribution networks in the current scenario of high penetration of Distributed Generation (DG) is a problem of great importance. In the competitive environment of electricity markets and smart grids, Demand Response (DR) is also gaining notable impact with several benefits for the whole system. The work presented in this paper comprises a methodology able to define the cost allocation in distribution networks considering large integration of DG and DR resources. The proposed methodology is divided into three phases and it is based on an AC Optimal Power Flow (OPF) including the determination of topological distribution factors, and consequent application of the MW-mile method. The application of the proposed tariffs definition methodology is illustrated in a distribution network with 33 buses, 66 DG units, and 32 consumers with DR capacity.