920 resultados para Natural products -- Synthesis
Resumo:
Recent studies have shown that deoxygenated human red blood cells (RBCs) converted garlic-derived polysulfides into hydrogen sulfide, which in turn produced vasorelaxation in aortic ring preparations. The vasoactivity was proposed to occur via glucose- and thiol-dependent acellular reactions. In the present study, we investigated the interaction of garlic extracts with human deoxygenated RBCs and its effect on intracellular hemoglobin molecules. The results showed that garlic extract covalently modified intraerythrocytic deoxygenated hemoglobin. The modification identified consisted of an addition of 71 atomic mass units, suggesting allylation of the cysteine residues. Consistently, purified human deoxyhemoglobin reacted with chemically pure diallyl disulfide, showing the same modification as garlic extracts. Tandem mass spectrometry analysis demonstrated that garlic extract and diallyl disulfide modified hemoglobin's beta-chain at cysteine-93 (beta-93C) or cysteine-112 (beta-112C). These results indicate that garlic-derived organic disulfides as well as pure diallyl disulfide must permeate the RBC membrane and modified deoxyhemoglobin at beta-93C or beta-112C. Although the physiological role of the reported garlic extract-induced allyl modification on human hemoglobin warrants further study, the results indicate that constituents of natural products, such as those from garlic extract, modify intracellular proteins.
Resumo:
The European Marine Board recently published a position paper on linking oceans and human health as a strategic research priority for Europe. With this position paper as a reference, the March 2014 Cornwall Oceans and Human Health Workshop brought together key scientists, policy makers, funders, business, and non governmental organisations from Europe and the US to review the recent interdisciplinary and cutting edge research in oceans and human health specifically the growing evidence of the impacts of oceans and seas on human health and wellbeing (and the effects of humans on the oceans). These impacts are a complex mixture of negative influences (e.g. from climate change and extreme weather to harmful algal blooms and chemical pollution) and beneficial factors (e.g. from natural products including seafood to marine renewable energy and wellbeing from interactions with coastal environments). Integrated approaches across disciplines, institutions, and nations in science and policy are needed to protect both the oceans and human health and wellbeing now and in the future.
Resumo:
The European Marine Board recently published a position paper on linking oceans and human health as a strategic research priority for Europe. With this position paper as a reference, the March 2014 Cornwall Oceans and Human Health Workshop brought together key scientists, policy makers, funders, business, and non governmental organisations from Europe and the US to review the recent interdisciplinary and cutting edge research in oceans and human health specifically the growing evidence of the impacts of oceans and seas on human health and wellbeing (and the effects of humans on the oceans). These impacts are a complex mixture of negative influences (e.g. from climate change and extreme weather to harmful algal blooms and chemical pollution) and beneficial factors (e.g. from natural products including seafood to marine renewable energy and wellbeing from interactions with coastal environments). Integrated approaches across disciplines, institutions, and nations in science and policy are needed to protect both the oceans and human health and wellbeing now and in the future.
Resumo:
Madagascan frogs of the mantellid genus Mantella have been a rich source of alkaloids derived from dietary arthropods. Two species of frogs, inhabiting swamp forest, contain a unique set of alkaloids, previously proposed, based only on GC-MS and GC-FTIR data, to represent dehydro analogues of the homopumiliotoxins. The major alkaloid of this set, alkaloid 235C (2), now has been isolated in sufficient quantities (ca. 0.3 mg) to allow determination of the structure by NMR analysis. The structure of alkaloid 235C proved to be a 7,8-dehydro-8-desmethylpumiliotoxin. A comparison is presented between the mass, infrared, and H-1 NMR spectra of 235C (2) and a synthetic dehydrohomopumiliotoxin (1), initially proposed incorrectly as the structure for 235C.
Resumo:
Kutznerides 2 and 8 of the cyclic hexadepsipeptide family of antifungal natural products from the soil actinomycete Kutzneria sp. 744 contain two sets of chlorinated residues, a 6,7-dichlorohexahydropyrroloindole moiety derived from dichlorotryptophan and a 5-chloropiperazate moiety, as well as a methylcyclopropylglycine residue that may arise from isoleucine via a cryptic chlorination pathway. Previous studies identified KtzD, KtzQ and KtzR as three halogenases in the kutzneride pathway but left no candidate for installing the CS chlorine on piperazate. On the basis of analysis of the complete genome sequence of Kutzneria, we now identify a fourth halogenase in the pathway whose gene is separated from the defined kutzneride cluster by 12 open reading frames. KthP (kutzneride halogenase for piperazate) is a mononuclear nonheme iron halogenase that acts on the piperazyl ring tethered by a thioester linkage to the holo forms of thiolation domains. MS analysis of the protein-bound product confirmed chlorination of the piperazate framework from the (3S)- but not the (3R)-piperazyl-S-pantetheinyl thiolation proteins. After thioesterase-mediated release, nuclear magnetic resonance was used to assign the free imino acid as (3S,5S)-5-chloropiperazate, distinct from the 3S,5R stereoisomer reported in the mature kutznerides. These results demonstrate that a fourth halogenase, KthP, is active in the kutzneride biosynthetic pathway and suggest further processing of the (3S,5S)-5-chloropiperazate during subsequent incorporation into the kutzneride depsipeptide frameworks.
Resumo:
Phosphonates constitute a class of natural products that mimic the properties of the more common organophosphate ester metabolite yet are not readily degraded owing to the direct linkage of the phosphorus atom to the carbon atom. Phosphonate hydrolases have evolved to allow bacteria to utilize environmental phosphonates as a source of carbon and phosphorus. The work reported in this paper examines one such enzyme, phosphonoacetate hydrolase. By using a bioinformatic approach, we circumscribed the biological range of phosphonoacetate hydrolase to a select group of bacterial species from different classes of Proteobacteria. In addition, using gene context, we identified a novel 2-aminoethylphosphonate degradation pathway in which phosphonoacetate hydrolase is a participant. The X-ray structure of phosphonoformate-bound phosphonoacetate hydrolase was determined to reveal that this enzyme is most closely related to nucleotide pyrophosphatase/diesterase, a promiscuous two-zinc ion metalloenzyme of the alkaline phosphatase enzyme superfamily. The X-ray structure and metal ion specificity tests showed that phosphonoacetate hydrolase is also a two-zinc ion metalloenzyme. By using site-directed mutagenesis and P-32-labeling strategies, the catalytic nucleophile was shown to be Thr64. A structure-guided, site-directed mutation-based inquiry of the catalytic contributions of active site residues identified Lys126 and Lys128 as the most likely candidates for stabilization of the aci-carboxylate dianion leaving group. A catalytic mechanism is proposed which combines Lys12/Lys128 leaving group stabilization with zinc ion activation of the Thr64 nucleophile and the substrate phosphoryl group.
Resumo:
Hopanoids are bacterial surrogates of eukaryotic membrane sterols and among earth's most abundant natural products. Their molecular fossils remain in sediments spanning more than a billion years. However, hopanoid metabolism and function are not fully understood. Burkholderia species are environmental opportunistic pathogens that produce hopanoids and also occupy diverse ecological niches. We investigated hopanoids biosynthesis in Burkholderia cenocepacia by deletion mutagenesis and structural characterization of the hopanoids produced by the mutants. The enzymes encoded by hpnH and hpnG were essential for production of all C35 extended hopanoids, including bacteriohopanetetrol (BHT), BHT glucosamine and BHT cyclitol ether. Deletion of hpnI resulted in BHT production, while ΔhpnJ produced only BHT glucosamine. Thus, HpnI is required for BHT glucosamine production while HpnJ is responsible for its conversion to the cyclitol ether. The ΔhpnH and ΔhpnG mutants could not grow under any stress condition tested, whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.
Resumo:
Food colours are added to different types of commodities to increase their visual attractiveness or to compensate for natural colour variations. The use of these additives is strictly regulated in the European Union, the United States and many other countries worldwide. There is a growing concern about the safety of some commonly used legal food colourants and there is a trend to replace the synthetic forms with natural products. Additionally, a number of dyes with known or suspected genotoxic or carcinogenic properties have been shown to be added illegally to foods. Robust monitoring programs based on reliable detection methods are required to assure the food is free from harmful colours. The aim of this review is to present an up to date status of the various concerns arising from use of colour additives in food. The most important food safety concerns in the field of food colours are lack of uniform regulation concerning legal food colours worldwide, possible link of artificial colours to hyperactive behaviour, replacement of synthetic colours with natural ones and the presence of harmful illegal dyes - both known but also new, emerging ones in food. The legal status of food colour additives in the EU, US and worldwide is summarized. The reported negative health effects of both legal and illegal colours are presented. The European Rapid Alert System for Food and Feed notifications and US import alerts concerning food colours are analyzed and trends in fraudulent use of colour additives identified. The detection methods for synthetic colours are also reviewed.
Resumo:
Vitis vinifera L., the most widely cultivated fruit crop in the world, was the starting point for the development of this PhD thesis. This subject was exploited following on two actual trends: i) the development of rapid, simple, and high sensitive methodologies with minimal sample handling; and ii) the valuation of natural products as a source of compounds with potential health benefits. The target group of compounds under study were the volatile terpenoids (mono and sesquiterpenoids) and C13 norisoprenoids, since they may present biological impact, either from the sensorial point of view, as regards to the wine aroma, or by the beneficial properties for the human health. Two novel methodologies for quantification of C13 norisoprenoids in wines were developed. The first methodology, a rapid method, was based on the headspace solid-phase microextraction combined with gas chromatography-quadrupole mass spectrometry operating at selected ion monitoring mode (HS-SPME/GC-qMS-SIM), using GC conditions that allowed obtaining a C13 norisoprenoid volatile signature. It does not require any pre-treatment of the sample, and the C13 norisoprenoid composition of the wine was evaluated based on the chromatographic profile and specific m/z fragments, without complete chromatographic separation of its components. The second methodology, used as reference method, was based on the HS-SPME/GC-qMS-SIM, allowing the GC conditions for an adequate chromatographic resolution of wine components. For quantification purposes, external calibration curves were constructed with β-ionone, with regression coefficient (r2) of 0.9968 (RSD 12.51 %) and 0.9940 (RSD of 1.08 %) for the rapid method and for the reference method, respectively. Low detection limits (1.57 and 1.10 μg L-1) were observed. These methodologies were applied to seventeen white and red table wines. Two vitispirane isomers (158-1529 L-1) and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) (6.42-39.45 μg L-1) were quantified. The data obtained for vitispirane isomers and TDN using the two methods were highly correlated (r2 of 0.9756 and 0.9630, respectively). A rapid methodology for the establishment of the varietal volatile profile of Vitis vinifera L. cv. 'Fernão-Pires' (FP) white wines by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (HS-SPME/GCxGC-TOFMS) was developed. Monovarietal wines from different harvests, Appellations, and producers were analysed. The study was focused on the volatiles that seem to be significant to the varietal character, such as mono and sesquiterpenic compounds, and C13 norisoprenoids. Two-dimensional chromatographic spaces containing the varietal compounds using the m/z fragments 93, 121, 161, 175 and 204 were established as follows: 1tR = 255-575 s, 2tR = 0,424-1,840 s, for monoterpenoids, 1tR = 555-685 s, 2tR = 0,528-0,856 s, for C13 norisoprenoids, and 1tR = 695-950 s, 2tR = 0,520-0,960 s, for sesquiterpenic compounds. For the three chemical groups under study, from a total of 170 compounds, 45 were determined in all wines, allowing defining the "varietal volatile profile" of FP wine. Among these compounds, 15 were detected for the first time in FP wines. This study proposes a HS-SPME/GCxGC-TOFMS based methodology combined with classification-reference sample to be used for rapid assessment of varietal volatile profile of wines. This approach is very useful to eliminate the majority of the non-terpenic and non-C13 norisoprenic compounds, allowing the definition of a two-dimensional chromatographic space containing these compounds, simplifying the data compared to the original data, and reducing the time of analysis. The presence of sesquiterpenic compounds in Vitis vinifera L. related products, to which are assigned several biological properties, prompted us to investigate the antioxidant, antiproliferative and hepatoprotective activities of some sesquiterpenic compounds. Firstly, the antiradical capacity of trans,trans-farnesol, cis-nerolidol, α-humulene and guaiazulene was evaluated using chemical (DPPH• and hydroxyl radicals) and biological (Caco-2 cells) models. Guaiazulene (IC50= 0.73 mM) was the sesquiterpene with higher scavenger capacity against DPPH•, while trans,trans-farnesol (IC50= 1.81 mM) and cis-nerolidol (IC50= 1.48 mM) were more active towards hydroxyl radicals. All compounds, with the exception of α-humulene, at non-cytotoxic levels (≤ 1 mM), were able to protect Caco-2 cells from oxidative stress induced by tert-butyl hydroperoxide. The activity of the compounds under study was also evaluated as antiproliferative agents. Guaiazulene and cis-nerolidol were able to more effectively arrest the cell cycle in the S-phase than trans,trans-farnesol and α-humulene, being the last almost inactive. The relative hepatoprotection effect of fifteen sesquiterpenic compounds, presenting different chemical structures and commonly found in plants and plant-derived foods and beverages, was assessed. Endogenous lipid peroxidation and induced lipid peroxidation with tert-butyl hydroperoxide were evaluated in liver homogenates from Wistar rats. With the exception of α-humulene, all the sesquiterpenic compounds under study (1 mM) were effective in reducing the malonaldehyde levels in both endogenous and induced lipid peroxidation up to 35% and 70%, respectively. The developed 3D-QSAR models, relating the hepatoprotection activity with molecular properties, showed good fit (R2LOO > 0.819) with good prediction power (Q2 > 0.950 and SDEP < 2%) for both models. A network of effects associated with structural and chemical features of sesquiterpenic compounds such as shape, branching, symmetry, and presence of electronegative fragments, can modulate the hepatoprotective activity observed for these compounds. In conclusion, this study allowed the development of rapid and in-depth methods for the assessment of varietal volatile compounds that might have a positive impact on sensorial and health attributes related to Vitis vinifera L. These approaches can be extended to the analysis of other related food matrices, including grapes and musts, among others. In addition, the results of in vitro assays open a perspective for the promising use of the sesquiterpenic compounds, with similar chemical structures such as those studied in the present work, as antioxidants, hepatoprotective and antiproliferative agents, which meets the current challenges related to diseases of modern civilization.
Resumo:
This study aimed to analyse the Brazilian savanna forest from a Legal Reserve (LR) area from a perspective of conservation, reservoir of organic carbon and medicinal biomass for a prospective use of native medicinal plants. An ethnobotanical and ethnopharmacological survey was carried out close to a community settled in the rural area in the south of Tocantins, being selected 9 of the most cited species (cajuí- Anacardium othonianum; inharé-Brosimum gaudichaudii; jatobá-Hymenaeae courbaril; jenipapo-Genipa americana, aroeira-Myracrodruon urundeuva; negramina-Siparuna guianensis; barbatimão- Stryphnodendron obovatum; assa peixe-Vernonia brasiliana, embaúba-Cecropia pachystachya). Crude foliar extracts were subjected to a preliminary phytochemical prospection and triage of secondary metabolites with antimicrobial activity of potential interest in health and familiar agriculture. Phenolic compounds, terpenes and flavonoids were detected in the extracts of most species, which suggests the presence of antimicrobial, antioxidant and anti-insect activities. It was evident the need to better know the LR as a reservoir of medicinal biomass in an area under ecological tension where 35% (610ha) of the property is LR and should be protected by law. Therefore, a forest inventory of live woody species was performed using the allometric or indirect method. This identified a rare remnant of Semidecidual Seasonal Forest amidst the largest world savannah, the Cerrado biome. An analysis of the forest average productivity per basal area (m².ha), aerial live biomass (ton.ha-1) and carbon stock was carried out. The forest fragment was considered relatively rich in species and diversity, although showing signs of disturbance and dominance by a few species. Its horizontal structure suggests biotic regeneration conditions. It is an important reservoir of medicinal plants. Of the families (57.5%) presenting medicinal species, 19 from a total of 33 are represented in the area and contain 44% (27) of the total species (61) and 63% (432) of the total individuals catalogued. Medicinal species have ecological importance for the equilibrium of the local flora and represent 80% of the 10 species with higher Importance Value Index (IVI): Tetragastris altissima, Chrysophyllum marginatum, Oenocarpus distichus, Sclerolobium paniculatum, Simarouba versicolor, Alibertia macrophylla, Siparuna guianensis, Maprounea guianensis, Licania parvifolia e Physocalymma scaberrimum. Medicinal productivity was high for this type of phytophysionomy: 183,2 ton. ha-1 of biomass and 91,51 ton. ha-1 of carbon representing 66% of the total biomass and carbon of this Cerrado forest. From this stage S. guianensis (Siparunaceae) was selected for performing bioassays in order to verify its biological activity against microorganisms of health and agricultural relevance. This is a native aromatic medicinal plant recommended as priority for conservation, with local popular medicinal validation and availability of medicinal feedstock (3300 Kg.ha-1), with the foliar fraction giving 38Kg/ha of crude extract and 5L/ha of essential oil. Foliar crude extracts and essential oil were obtained and tested in vitro using a disk diffusion bioassay. Different concentrations of these natural products were tested against gram-positive bacteria (Staphylococcus aureus ATCC 29213), gram-negative bacteria (Escherichia coli ATCC 25922 and ATCC 35218; Pseudomonas aeruginosa ATCC 10145) and fungi (Candida albicans ATCC 6258 e Fusarium oxysporum). The essential oil inhibited the growth of S. aureus in its crude concentration (380μg.mL-1), as well as diluted to half (190μg.mL-1) and a quarter strength (95μg.mL-1). It’s likely that such action is due to sesquiterpenes major components, such as bisabolol and bisabolene (10.35%), measured by gas chromatography (GC-MS, GC-FID). Extracts did not exhibit any antimicrobial activity against the microorganisms tested. The native medicinal plants prospective market is an alternative that favours the conservation of biodiversity while generating benefits for the development of sustainable family productive activities within local ecosystems instead of the current inappropriate uses. This strengthens conservation policies of Legal Reserve in rural settlements and is in agreement with public policy on global warming and climate changes.
Resumo:
Marine sponges harbor microbial communities of immense ecological and biotechnological importance. Recently, they have been focus of heightened attention due to the wide range of biologically active compounds with potential application, particularly, in chemical, cosmetic and pharmaceutical industries. However, we still lack fundamental knowledge of their microbial ecology and biotechnological potential. The development of high-throughput sequencing technologies has given rise to a new range of tools that can help us explore the biotechnological potential of sponges with incredible detail. Metagenomics, in particular, has the power to revolutionize the production of bioactive compounds produced by unculturable microorganisms. It can offer the identification of biosynthetic genes or gene clusters that can be heterologously expressed on a cultivable and suitable host. This review focus on the exploration of the biotechnological potential of sponge-associated microorganisms, and integration of molecular approaches, whose increasing efficiency can play an essential role on achieving a sustainable source of natural products.
Resumo:
Angiotensin-converting enzyme (ACE) plays a critical role in rennin-angiotensin system. Recently, natural products isolated from herbal medicines revealed inhibitory effects against ACE which suggested their potential activities in regulating blood pressure. In this study, ACE inhibition (ACEI) of 21 phenylethanoid glycosides and related phenolic compounds were investigated by measuring the production of HA a rapid, sensitive, accurate and specific ultra-performance liquid chromatography-tandem quadrupole mass spectrometry (UPLC-MS/MS) method. The test compounds showed different inhibitory potencies on ACE ranging from 5.29 to 95.01% at 50 mM, and the compounds with ACEI higher than 50% were selected for further IC50 determination. The IC50 values were from 0.53 ± 0.04 to 15.035 ± 0.036 mM. The structure-inhibition relationship were then explored and the result showed that cinnamoyl groups played an essential role in ACEI of phenylethanoid glycosides. Furthermore, the sub-structures of increasing ACEI for phenylethanoid glycosides is more hydroxyls and less steric hindrance to chelate the active site Zn2+ of ACE. In summary, our results suggested that phenylethanoid glycosides are a widely available source of anti-hypertensive natural products and the information provided from structure-inhibition relationship study could aid the design of structurally modified phenylethanoid glycosides as anti-hypertensive drugs.
Resumo:
Mestrado em Engenharia Química – Ramo Optimização Energética na Indústria Química
Resumo:
Madagascar periwinkle (Catharanthus roseus) produces the well known and remarkably complex dimeric anticancer alkaloids vinblastine and vincristine that are derived by coupling vindoline and catharanthine monomers. This thesis describes the novel application of carborundum abrasion (CA) technique as a tool for large scale isolation of leaf epidermis enriched proteins. This technique was used to facilitate the purification to apparent homogeneity of 16-hydroxytabersonine-16-0-methyltransferse (l60MT) that catalyses the second step in the 6 step pathway that converts tabersonine into vindoline. This versatile tool was also used to harvest leaf epidermis enriched mRNAs that facilitated the molecular cloning of the 160MT. Functional expression and biochemical characterization of recombinant 160MT enzyme showed that it had a very narrow substrate specificity and high affinity for 16-hydroxytabersonine, since other closely related monoterpene indole alkaloids (MIAs) did not act as substrates. In addition to allowing the cloning of this gene, CA technique clearly showed that 160MT is predominantly expressed in Catharanthus leaf epidermis, in contrast to several other OMTs that appear to be expressed in other Catharanthus tissues. The results provide compelling evidence that most of the pathway for vindoline biosynthesis including the 0- methylation of 16-hydroxytabersonine occurs exclusively in leaf epidermis, with subsequent steps occurring in other leaf cell types. Small molecule O-methyltransferases (OMTs) (E.C. 2.1.1.6.x) catalyze the transfer of the reactive methyl group of S-adenosyl-L-methionine (SAM) to free hydroxyl groups of acceptor molecules. Plant OMTs, unlike their monomeric mammalian homologues, exist as functional homodimers. While the biological advantages for dimer fonnation with plant OMTs remain to be established, studies with OMTs from the benzylisoquinoline producing plant, Thalictrum tuberosum, showed that co-expression of 2 recombinant OMTs produced novel substrate specificities not found when each rOMT was expressed individually (Frick, Kutchan, 1999) . These results suggest that OMTs can fonn heterodimers that confer novel substrate specificities not possible with the homodimer alone. The present study describes a 160MT model based strategy attempting to modify the substrate specificity by site-specific mutagenesis. Our failure to generate altered substrate acceptance profiles in our 160MT mutants has lead us to study the biochemical properties ofhomodimers and heterodimers. Experimental evidence is provided to show that active sites found on OMT dimers function independently and that bifunctional heterodimeric OMTs may be fonned in vivo to produce a broader and more diverse range of natural products in plants.