999 resultados para Nanotubos de Carbono
Resumo:
In this work the production of synthesis gas from a mixture of methane (CH4) and carbon dioxide (CO2) by thermal plasma was studied. The best relation found for the gas mixture [CO2]/[CH4] was 1.3. Under the excess of CH4 in the gas mixture soot was formed and also benzene, indene and naphthalene were identified. The disulfides compounds in the gas mixture were degraded causing no interference in the synthesis gas production, suggesting no needs of pretreatment step for sulfurorganic compounds removal in the process
Resumo:
Spent alkaline and Zn-C batteries were placed in seawater, rainwater or landfill leachate at room temperature for up 30 days in order to simulate natural weathering. After the experiments pH and electrical conductivity of the liquid were measured. The precipitate formed and the filtrate were submitted to metal analysis by ICP-OES. Seawater is the most corrosive medium, followed by landfill leachate. Pb, Cd and Hg were mainly in the filtrate. Fe, Mn and Zn were generally dominant in the precipitate. Na and K account for the electrical conductivity and are good indicators of the corrosion stage of the batteries.
Resumo:
This work involved the study of degradation of the herbicide bentazone in aqueous solution by different routes, in order to search a method that generates safe products to the environment. It was tested electrochemical polarization methods involving positive and negative potential, irradiation with UV light and deposition of TiO2 on the electrode surface, seeking a catalytic effect. After different times of degradation, aliquots were removed and the scan of molecular absorption spectrum of UV-Vis was performed. From the spectra decay of bentazone, the kinetics of different processes was accompanied and the rate constants were determined.
Resumo:
PbO2 films were electroformed onto carbon cloth substrates (twill woven type) in acid conditions using the nitrate precursor by changing the electrodeposition current density, temperature and pH, in order to optimize the formation of the β-PbO2 phase. The crystal structure and morphology of the PbO2 films were investigated using X-ray diffraction (XRD) and scanning electronic microscopy (SEM) techniques. The optimum conditions obtained for formation of the β-PbO2 were presented and discussed.
Resumo:
The world's largest ethanol producer (USA) uses corn as feedstock. DDGS (distillers dried grains with solubles) is the main waste generated from this process (around 32 million t/year). DDGS samples were pyrolyzed at 1000 ºC in a furnace with controlled atmosphere. The effluent was channeled to a second furnace, in which catalyst substrates were placed. Chromatographic analysis was used to evaluate the gaseous effluents, showing that the catalyst reduced hydrocarbon emissions. The solid products formed were analyzed by SEM and TEM. Graphitic structures and carbon nanofibers, 50 µm in length and with diameters of 80-200 nm, were formed.
Resumo:
TiO2 nanotubes were synthesized by hydrothermal method and doped with three nitrogen compounds to enhance photocatalytic activity under visible light. Catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and specific surface area and pore volume determined by BET and BJH methods, respectively. Photocatalytic activity was evaluated by photodegradation of rhodamine B under visible and UV radiations. Results showed doped-nanotubes were more efficient under visible light. The best photocatalytic activity was for sample NTT-7-600/NH3I, being 30% higher than the non-doped sample.
Resumo:
Glycerol, a co-product of biodiesel production, was used as a carbon source for the kinetics studies and production of biosurfactants by P. aeruginosa MSIC02. The highest fermentative parameters (Y PX = 3.04 g g-1; Y PS = 0.189 g g-1, P B = 31.94 mg L-1 h-1 and P X = 10.5 mg L-1 h-1) were obtained at concentrations of 0.4% (w/v) NaNO3 and 2% (w/v) glycerol. The rhamnolipid exhibited 80% of emulsification on kerosene, surface tension of 32.5 mN m-1, CMC = 28.2 mg L-1, C20 (concentration of surfactant in the bulk phase that produces a reduction of 20 dyn/cm in the surface tension of the solvent) = 0.99 mg L-1, Γm (surface concentration excess) = 2.4 x 10-26 mol Å-2 and S (surface area) = 70.4 Ų molecule-1 with solutions containing 10% NaCl. A mathematical model based on logistic equation was considered to representing the process. Model parameters were estimated by non-linear regression method. This approach was able to give a good description of the process.
Resumo:
Rice husk ash (RHA) is used as a silica source for several purposes, among them to obtain metal catalysts, as was done in this work. The catalysts were characterized by chemisorption, physisorption, thermal analyses (TG, DSC), X-ray diffraction, X-ray fluorescence, temperature-programmed reduction and scanning electron microscopy. The catalysts synthesized with different Ni loadings supported on RHA were applied to the reaction of dry reforming of methane. The reaction was tested at three temperatures of catalytic reduction (500, 600 and 700 ºC). All synthesized catalysts were active for the studied reaction, with different H2/CO ratios achieved according to degree of metallic dispersion.
Resumo:
A glassy carbon electrode modified with ruthenium hexacyanoferrate (RuOHCF) was investigated as an electrocatalyst for the detection of procaine with the aim of quantification in pharmaceutical and forensic samples. The RuOHCF films were prepared by electrochemical deposition, and the parameters used in this process (concentration of RuCl3, K3Fe(CN)6, temperature, and number of cyclic voltammograms recorded in the modification step) were carefully optimized. Based on the optimal conditions achieved, the RuOHCF modified electrode allows the determination of procaine at 0.0 V with a detection limit of 11 nmol L-1using square wave voltammetry.
Resumo:
In this paper, two simple ways of evaluating carbon steel sheet corrosion in a hydrochloric acid solution were presented as an experimental proposal for corrosion teaching. The first method is based on direct measurements of mass before and after corrosion tests. The second approach follows the principle of visual colorimetry by which soluble corrosion products are transformed into red complexes allowing monitoring of the products’ concentration according to increases in solution color intensity. Both methods proved able to determine the corrosion rate.
Resumo:
Solid samples containing a Ca2Fe2O5 phase were synthesized using the Pechini method. The samples were characterized using X-ray diffraction, thermogravimetric analysis, differential thermal analysis, X-ray fluorescence, nitrogen adsorption/desorption isotherms, and scanning electron microscopy. The stability of the Ca2Fe2O5 phase was evaluated in the photocatalytic degradation of methylene blue (MB) in aqueous solution in the presence of bubbling gas (air, N2, or CO2). The presence of CO2 is known to suppress MB degradation. After the photocatalytic test, changes were observed in the crystalline phase of all systems. These results suggest the low stability of the Ca2Fe2O5 phase in aqueous systems and the significant effect of CO2 on the photocatalytic activity of the Ca2Fe2O5 phase.
Resumo:
Carbon dots (CDs) constitute a new class of carbon-based nanomaterials that measure less than 10 nm and display attractive physical and chemical features such as fluorescence. CDs have been considered the new “power” carbon nanomaterials since their accidental discovery in 2004. This study reports a simple, easy, and accessible experiment for undergraduate courses. The experiment involves the preparation of CDs by pyrolysis using commercial gelatin as a low cost precursor as well as CD purification and optical characterization. The optical properties of CDs such as absorption and emission properties make them a promising material for teaching the basic concepts and techniques used for characterization of nanomaterials. Also, the reactants and final product are suitable for undergraduate courses since they are non-toxic materials. The prepared CDs can be used in such applications as bioimaging, solar cells, and photocatalysis.
Resumo:
Este estudo descreve o comportamento voltamétrico da redução de 2-furfuraldeído em etanol utilizando-se eletrodo de carbono vítreo, visando estabelecer condições experimentais adequadas para a determinação de 2-furfuraldeído em álcool combustível. Os voltamogramas obtidos para o 2-furfuraldeído em uma velocidade de varredura (v) de 100mV.s-1 apresentaram uma corrente de pico catódica (i pc) definida em um potencial de -1,45V (vs. ECS) para o meio aquoso e -1,71V (vs. ECS) para o meio alcoólico, não sendo observadas correntes de pico anódicas nestes meios reacionais. A relação entre i pc e v½ apresentou-se linear em ambos os meios, exibindo um transporte de massa controlado por difusão. A análise dos parâmetros eletroquímicos obtidos neste estudo revelou que o processo eletródico apresenta um comportamento irreversível. A dependência de i pc com a concentração da espécie reacional apresentou-se linear no intervalo de concentração estudado, de 9,5x10-4 a 5,8x10-3 mol L-1 para ambos os meios. A sensibilidade do método em meio aquoso e alcoólico foi de 13,4 e 13,0 (x 10-3) mA mol-1 L respectivamente. Os limites de detecção (L.D.) referentes à determinação de 2-furfuraldeído, em meio aquoso e alcoólico situam-se entre 0,70 e 0,80 (x 10-3) mol L-1 respectivamente.
Resumo:
A reação de eletro-oxidação do metanol foi estudada sobre eletrocatalisadores de Pt/C, PtRu/C e PtMo/C preparados pelo método do ácido fórmico em diferentes composições atômicas. Os produtos da oxidação do metanol foram monitorados pela técnica de DEMS. O desempenho dos catalisadores frente a reação de oxidação do metanol foi estudado através dos perfis voltamétricos e experimentos de cronoamperoometria.
Resumo:
Estudos eletroanalíticos foram realizados com o Nedocromil de Sódio empregando as técnicas voltamétricas de varredura linear, pulso diferencial e onda quadrada, em tampão Britton-Robinson (pH 4,0). No estudo voltamétrico empregando a modalidade de varredura linear observou-se dois picos catódicos, irreversíveis, nos valores de potencial de -0,86 V e -1,10 V (vs ECS). As correntes de pico catódicas apresentaram um controle difusional segundo a relação Ipc versus v½. A dependência de Ipc com a concentração apresentou linearidade entre 5,0x10-4 mol L-1 e 5,0x10-3 mol L-1, limite de detecção de 8,2x10-5 mol L-1 e sensibilidade de 6,3x10³ mA/ mol L-1. Na voltametria de pulso diferencial o Nedocromil de Sódio apresentou dois picos catódicos, irreversíveis, nos valores de potencial de -0,67 V e -0,75 V (vs ECS). Curvas analíticas foram obtidas no intervalo de 3,0x10-6 mol L-1 a 1,0x10-5 mol L-1, limite de detecção de 4,9x10-7 mol L-1 e sensibilidade de 8,7x10(4) mA/ mol L-1. Na voltametria de onda quadrada observou-se dois picos catódicos nos valores de potencial de -0,80 V e -0,91 V (vs ECS), linearidade de 5,0x10-7 mol L-1 a 1,0x10-5 mol L-1, com limite de detecção e uma sensibilidade de 2,7x10-6 mol L-1 e 1,1x10(6) mA/ mol L-1, respectivamente.