989 resultados para NaY zeolite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report discovery of a new efficient and robust antenna composite for light harvesting. The organic dye hostasol red (HR) is strongly luminescent in aprotic solvents but only weakly luminescent in potassium zeolite L (ZL) at ambient conditions. We observed a dramatic increase of the luminescence quantum yield of HR–ZL composites if some or all exchangeable potassium cations of ZL are substituted by an organic imidazolium cation (IMZ+) and if the acceptor HR is embedded in the middle part of the channels, so that it is fully protected by the environment of the perylene dye tb-DXP. This led to the discovery of a highly efficient donor,acceptor-ZL antenna material where tb-DXP acts as donor and HR acts as acceptor. The material has a donor-to-acceptor (D/A) absorption ratio of more than 100:1 and a nearly quantitative FRET efficiency. Synthesis of this host–guest material is reported. We describe a successful procedure for achieving full sealing of the ZL channel entrances such that the guests cannot escape. This new material is of great interest for applications in luminescent solar concentrator (LSC) devices because the efficiency killing self-absorption is very low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aharon Rapoporṭ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling at ODP Site 641 (on the western margin of Galicia Bank, off northwestern Spain) revealed a thin, but pronounced, interval of black shale and gray-green claystone. Our high-resolution study combines the sedimentology, micropaleontology (palynomorphs and others), organic and inorganic geochemistry, and isotopic values of this layer to demonstrate the distinct nature of the sediment and prove that the sequence represents the local sedimentary expression of the global Cenomanian/Turonian Oceanic Anoxic Event (OAE) of Schlanger and Jenkyns (1976), Arthur and Schlanger (1979), and Jenkyns (1980), also called the Cenomanian/Turonian Boundary Event (CTBE). The most striking evidence is that the strong positive d13C excursion characterizing the CTBE sequences in shallow areas can be traced into a pronounced deep-sea expression, thus providing a good stratigraphic marker for the CTBE in various paleosettings. The isotopic excursion at Site 641 coincides with an extremely enriched trace metal content, with values that were previously unknown for the Cretaceous Atlantic. Similar to other CTBE occurrences, the organic carbon content is high (up to 11%) and the organic matter is of dominantly marine origin (kerogen type II). The bulk mineralogy of the CTBE sediments does not differ significantly from the general trend of Cretaceous North Atlantic sediments (dominance of smectite and zeolite with minor amounts of illite and scattered palygorskite, kaolinite, and chlorite); thus, no evidence for either increased volcanic activity nor a drastic climatic change in the borderlands was found. Results from Site 641 are compared with the CTBE section found at Site 398, DSDP Leg 47B (Vigo Seamount at the southern end of the Galicia Bank).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clasts of metamorphosed mafic igneous rock of diverse composition were recovered in two drill sites on a serpentine mud volcano in the outer Mariana forearc during Ocean Drilling Program Leg 125. These clasts are xenolithic fragments that have been entrained in the rising serpentine mud, and make up less that 9% of the total rock recovered at Sites 778 and 779. Most samples are metabasalt or metadiabase, although one clast of possible boninite and one cumulate gabbro were recovered. On the basis of trace element signatures, samples are interpreted to represent both arc-derived and mid-ocean ridge-derived compositions. Rocks with extremely low TiO2 (<0.3 wt%) and Zr (<30 ppm) are similar to boninite series rocks. Samples with low TiO2 (<0.9 wt%) and Zr (<50 ppm) and extreme potassium enrichment (K2O/Na2O >3.9) may represent island arc rocks similar to shoshonites. However, the K2O/Na2O ratios are much higher than those reported for shoshonites from modem or ancient arcs and may be the result of metamorphism. Samples with moderate TiO2 (1.4 to 1.5 wt%) and Zr (72 to 85 ppm) are similar to rocks from mid-ocean ridges. A few samples have TiO2 and Zr intermediate between island arc and mid-ocean ridge basalt-like rocks. Two samples have high iron (Fe2O3* = >12.8 to 18.5 wt%) (Fe2O3* = total iron calculated as Fe2O3) and TiO2 (>2.3 wt%) and resemble FeTi basalt recovered from mid-ocean ridges. Metamorphism in most samples ranges from low-temperature zeolite, typical of ocean floor weathering, to prehnite-pumpellyite facies and perhaps lower greenschist. Blue amphibole and lawsonite minerals are present in several samples. One diabase clast (Sample 9) exhibits Ca enrichment, similar to rodingite metamorphism, typical of mafic blocks in serpentinized masses. The presence of both low-grade (clays and zeolites) and higher grade (lawsonite) metamorphism indicates retrograde processes in these clasts. These clasts are fragments of the forearc crust and possibly of the subducting plate that have been entrained in the rising serpentine and may represent the deepest mafic rocks ever recovered from the Mariana forearc. The variable compositions and degree of metamorphism of these clasts requires at least two tectonic origins. The recovery of clasts with mid-ocean ridge and arc chemical affinities in a single drill hole requires these clasts to have been "mixed" on a small scale either (1) in the forearc crustal sequence, or (2) after inclusion in the rising serpentine mud. The source of the MORB-like samples and an explanation for the presence of both MORB-like and arc-like rocks in close proximity is critical to any model of the evolution of the Mariana forearc. The source of the MORB-like samples likely will be one (or more) of the following: (1) accretion of Pacific plate lithosphere, (2) remnants of original forearc crust (trapped plate), (3) volcanism in the supra-subduction zone (arc or forearc) environment, or (4) derivation from the subducting slab by faulting along the dÈcollement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This book presents new data on chemical and mineral compositions and on density of altered and fresh igneous rocks from key DSDP and ODP holes drilled on the following main tectonomagmatic structures of the ocean floor: 1. Mid-ocean ridges and abyssal plains and basins (DSDP Legs 37, 61, 63, 64, 65, 69, 70, 83, and 91 and ODP Legs 106, 111, 123, 129, 137, 139, 140, 148, and 169); 2. Seamounts and guyots (DSDP Legs 19, 55, and 62 and ODP Legs 143 and 144); 3. Intraplate rises (DSDP Legs 26, 33, 51, 52, 53, 72, and 74 and ODP Legs 104, 115, 120, 121, and 183); and 4. Marginal seas (DSDP Legs 19, 59, and 60 and ODP Legs 124, 125, 126, 127, 128, and 135). Study results of altered gabbro from the Southwest Indian Ridge (ODP Leg 118) and serpentinized ultramafic rocks from the Galicia margin (ODP Leg 103) are also presented. Samples were collected by the authors from the DSDP/ODP repositories, as well as during some Glomar Challenger and JOIDES Resolution legs. The book also includes descriptions of thin sections, geochemical diagrams, data on secondary mineral assemblages, and recalculated results of chemical analyses with corrections for rock density. Atomic content of each element can be quantified in grams per standard volume (g/1000 cm**3). The suite of results can be used to estimate mass balance, but parts of the data need additional work, which depends on locating fresh analogs of altered rocks studied here. Results of quantitative estimation of element mobility in recovered sections of the upper oceanic crust as a whole are shown for certain cases: Hole 504B (Costa Rica Rift) and Holes 856H, 857C, and 857D (Middle Valley, Juan de Fuca Ridge).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous veins are present in basalts recovered from Hole 462A, Leg 61 of the Deep Sea Drilling Project. Three mineral assemblages are recognized and stratigraphically controlled. These assemblages are (1) a zeolite-bearing, quartz-poor assemblage which occurs from Core 44 to the bottom of the hole and contains smectite, clinoptilolite, calcite, pyrite, ± chabazite, ± analcime, ± quartz, ± apophyllite, ± talc (?); (2) a quartz-rich, pyrite-bearing assemblage, found between Cores 19 and 29, which contains smectite, calcite, quartz, and pyrite; and (3) a quartz-rich, celadonite-bearing assemblage which occurs from Cores 14 through 17 and contains smectite, calcite, quartz, celadonite, and Fe oxide. These data are interpreted to represent two episodes of vein mineral formation with an oxidative overprint on the more recent. The first episode followed the outpourings of basaltic lavas onto the sea floor. Zeolite-bearing veins were formed at elevated temperatures under low PCO2 while the thermal gradient was high and before a cover of calcareous sediments had formed. The second mineralization episode followed injection of basalt and microdiabase sills into a thick layer of sediments, and produced all the vein minerals now occurring between Cores 14 and 29. These veins formed at lower temperature and higher PCO2 than zeolite-bearing veins. The presence of pyrite indicates a nonoxidative environment. After the initial formation of these veins, oxygenated seawater diffused through the sedimentary cover and oxidized the pyrite and smectite, forming celadonite and Fe oxides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Correlation of mineral associations from sediment recovered on the northwestern Australian continental margin document the juvenile-to-mature evolution of a segment of the Indian Ocean. Lower Cretaceous sediments contain sandy-to-silty radiolarian claystone that consists of highly smectitic mixed-layered illite/smectite (I/S) in addition to minor amounts of diagenetic pyrite, barite, and rhodochrosite. These immature, poorly sorted sediments were derived from nearby continental margin sources. Discrete bentonite layers and abundant smectite are the alteration products of volcanic material deposited during early basin formation. Abundant quartz-replaced radiolarian tests suggest high surface-water productivity, and calcareous fossils indicate water depths were above the calcite compensation depth (CCD) in the juvenile Indian Ocean. The increase in pelagic carbonate from the mid- to Late Cretaceous signals the transition to mature, open-ocean conditions. Similar to other slowly deposited contemporaneous deep-sea sediments, mid- to Upper Cretaceous sediments of the northwestern margin of Australia contain palygorskite. This palygorskite is associated with calcareous sediment across the ooze-to-chalk transition, detrital mixed-layered I/S, and zeolite minerals in places. This palygorskite occurs above the transformation from opal-A to opal-CT. The underlying opal-CT sediment contains abundant smectite and zeolite minerals. Calcareous sediment dominates the Cenozoic, except at abyssal sites that were not inundated by calcareous turbidites. Paleocene and Eocene sediments contain abundant smectite and zeolite minerals derived from the alteration of volcanic material. Palygorskite was found to be associated with sepiolite and dolomite in Miocene sediments from Site 765 in the Argo Basin. Pliocene and Quaternary sediments contain detrital kaolinite and mixed-layered I/S, abundant opal-A radiolarian tests, and minor amounts of pyrite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A basaltic sequence of Eocene submarine-erupted pyroclastic sediments totals at least 388 m at DSDP Site 253 on the Ninetyeast Ridge. These fossiliferous hyaloclastic sediments have been erupted and fragmented by explosive volcanism (hydroexplosions) in shallow water. The occurrence of interbedded basaltic ash-fall tuffs within the younger horizons of the hyaloclastic sequence marks the emergence of some Ninetyeast Ridge volcanic vents above sea level. Considerable textural variation allows subdivision of the sequence into six informal lithostratigraphic units. Hydrothermal and diagenetic alteration has caused the complete replacement of all original glass by smectites, and the introduction of abundant zeolite and calcite cements. The major and trace element contents of the hyaloclastites vary due to the alteration, and the admixture of biogenous calcite. On a calcium carbonate-free basis systematic variations are recognisable. Mg, Ni, Cr and Cu are enriched, and Li and Zn depleted in the three older units relative to the younger three. The chemical variability is reflected by the development of saponite in the older part of the sequence and montmorillonite in the younger; and by the presence of a quartz-normative basalt flow occurring in Unit II, in contrast to the Mg-rich highly olivine-normative basalt at the base of the sequence. The younger and older parts of the sequence therefore appear to have been derived from magmas of different chemistry. The sequence, like other basaltic rocks recovered from the Ninetyeast Ridge, is enriched in the light relative to the heavy rare earth elements (REE) although the REE contents vary unsystematically with depth, probably because of the high-temperature subaqueous alteration and the presence of biogenous calcite. This REE data indicates that the Ninetyeast Ridge volcanism was different from that which produces mid-ocean ridge basalts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Other than halite diagenesis and organic matter degradation, Cl- and Br- are considered to be conservative in marine pore fluids. Consequently, Br-/Cl- ratios should remain constant during most diagenetic reactions. Nonetheless, Br-/Cl- molar ratios decrease to 0.00127 (~18% less than seawater value) in pore fluids from Site 833 in the Aoba Basin of the New Hebrides convergent margin despite the lack of halite diagenesis and little organic matter. Sediment at this site is largely volcanic ash, which becomes hydrated with depth as it converts to clay and zeolite minerals. These hydration reactions remove sufficient water to increase the concentrations of most solutes including Cl- and Br-. The resulting concentration gradients drive diffusion, but calculations indicate that diffusion does not decrease the Br-/Cl- ratio. Some Cl- may be leached from the ash, but insufficient amounts are available to cause the observed decrease in Br-/Cl- ratio. The limited source of Cl- suggests that proportionately more Br- than Cl- is lost from the fluids to the diagenetic solids. Similar nonconservative behavior of Cl- and Br- may occur during fluid circulation at ridge crests and flanks, thereby influencing the halide distribution in the crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep sea drilling on four seamounts in the Emperor Seamount chain revealed that Paleogene shallow-water carbonate sediments of the "bryozoan-algal" facies crown the basalt edifices. According to the biofacies model of Schlanger and Konishi (1966, 1975), this bryozoan- algal assemblage suggests that the seamounts formed in cooler, more northerly waters than those presently occupied by the island of Hawaii; i.e., the paleolatitudes of formation were greater than 20 °N. Moving southward toward the youngest member of the seamount chain, a facies gradient indicative of warmer waters was observed. This gradient is interpreted as a reflection of a northward shift in isotherms during the time span in which the seamounts were progressively formed (Savin et al., 1975). On all seamounts, sedimentation at the drilling sites occurred in a high-energy environment with water depths of approximately 20 meters. Early-stage carbonate diagenesis began in the phreatic zone in the presence of meteoric water, but proceeded after subsidence of the seamounts into intermediate sea waters, where the bulk, stable isotopic composition was determined. The subsidence into intermediate waters was rapid, and permitted establishment of an isotopic equilibrium which, like the facies gradient, reflects the northward shift in isotherms during the Paleogene. Calcite and zeolite cements comprise the later-stage diagenesis, and originated from solutions arising from the hydrolysis of the underlying basalt. In conclusion, the results of this study of the shallow-water carbonate sediments are not inconsistent with a paleolatitude of formation for Suiko Seamount (Site 433) of 26.9 ±3.5 °N, as determined by paleomagnetic measurements (Kono, 1980).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leg 83 of the Deep Sea Drilling Project has deepened Hole 504B to over 1 km into basement, 1350 m below the seafloor (BSF). The hole previously extended through 274.5 m of sediment and 561.5 m of pillow basalts altered at low temperature (< 100°C), to 836 m BSF. Leg 83 drilling penetrated an additional 10 m of pillows, a 209-m transition zone, and 295 m into a sheeted dike complex. Leg 83 basalts (836-1350 m BSF) generally contain superimposed greenschist and zeolite-facies mineral parageneses. Alteration of pillows and dikes from 836 to 898 m BSF occurred under reducing conditions at low water/rock ratios, and at temperatures probably greater than 100°C. Evolution of fluid composition resulted in the formation of (1) clay minerals, followed by (2) zeolites, anhydrite, and calcite. Alteration of basalts in the transition zone and dike sections (898-1350 m BSF) occurred in three basic stages, defined by the opening of fractures and the formation of characteristic secondary minerals. (1) Chlorite, actinolite, pyrite, albite, sphene, and minor quartz formed in veins and host basalts from partially reacted seawater (Mg-bearing, locally metal-and Si-enriched) at temperatures of at least 200-250°C. (2) Quartz, epidote, and sulfides formed in veins at temperatures of up to 380°C, from more evolved (Mg-depleted, metal-, Si-, and 18O-enriched) fluids. (3) The last stage is characterized by zeolite formation: (a) analcite and stilbite formed locally, possibly at temperatures less than 200°C followed by (b) formation of laumontite, heulàndite, scolecite, calcite, and prehnite from solutions depleted in Mg and enriched in Ca and 18O, at temperatures of up to 250°C. The presence of small amounts of anhydrite locally may be due to ingress of relatively unaltered seawater into the system during Stage 3. Alteration was controlled by the permeability of the crust and is characterized by generally incomplete recrystallization and replacement reactions among secondary minerals. Secondary mineralogy in the host basalts is strongly controlled by primary mineralogy. The alteration of Leg 83 basalts can be interpreted in terms of an evolving hydrothermal system, with (a) changes in solution composition because of reaction of seawater fluids with basalts at high temperatures; (b) variations in permeability caused by several stages of sealing and reopening of cracks; and (c) a general cooling of the system, caused either by the cooling of a magma chamber beneath the spreading center and/or the movement of the crust away from the heat source. The relationship of the high-temperature alteration in the transition zone and dike sections to the low-temperature alteration in the overlying pillow section remains uncertain.