372 resultados para NONORIENTABLE MANIFOLDS
Resumo:
Chaotic orientations of a top containing a fluid filled cavity are investigated analytically and numerically under small perturbations. The top spins and rolls in nonsliding contact with a rough horizontal plane and the fluid in the ellipsoidal shaped cavity is considered to be ideal and describable by finite degrees of freedom. A Hamiltonian structure is established to facilitate the application of Melnikov-Holmes-Marsden (MHM) integrals. In particular, chaotic motion of the liquid-filled top is identified to be arisen from the transversal intersections between the stable and unstable manifolds of an approximated, disturbed flow of the liquid-filled top via the MHM integrals. The developed analytical criteria are crosschecked with numerical simulations via the 4th Runge-Kutta algorithms with adaptive time steps.
Resumo:
We prove upper and lower bounds relating the quantum gate complexity of a unitary operation, U, to the optimal control cost associated to the synthesis of U. These bounds apply for any optimal control problem, and can be used to show that the quantum gate complexity is essentially equivalent to the optimal control cost for a wide range of problems, including time-optimal control and finding minimal distances on certain Riemannian, sub-Riemannian, and Finslerian manifolds. These results generalize the results of [Nielsen, Dowling, Gu, and Doherty, Science 311, 1133 (2006)], which showed that the gate complexity can be related to distances on a Riemannian manifold.
Resumo:
We present existence results for a Neumann problem involving critical Sobolev nonlinearities both on the right hand side of the equation and at the boundary condition.. Positive solutions are obtained through constrained minimization on the Nehari manifold. Our approach is based on the concentration 'compactness principle of P. L. Lions and M. Struwe.
Resumo:
Neural networks can be regarded as statistical models, and can be analysed in a Bayesian framework. Generalisation is measured by the performance on independent test data drawn from the same distribution as the training data. Such performance can be quantified by the posterior average of the information divergence between the true and the model distributions. Averaging over the Bayesian posterior guarantees internal coherence; Using information divergence guarantees invariance with respect to representation. The theory generalises the least mean squares theory for linear Gaussian models to general problems of statistical estimation. The main results are: (1)~the ideal optimal estimate is always given by average over the posterior; (2)~the optimal estimate within a computational model is given by the projection of the ideal estimate to the model. This incidentally shows some currently popular methods dealing with hyperpriors are in general unnecessary and misleading. The extension of information divergence to positive normalisable measures reveals a remarkable relation between the dlt dual affine geometry of statistical manifolds and the geometry of the dual pair of Banach spaces Ld and Ldd. It therefore offers conceptual simplification to information geometry. The general conclusion on the issue of evaluating neural network learning rules and other statistical inference methods is that such evaluations are only meaningful under three assumptions: The prior P(p), describing the environment of all the problems; the divergence Dd, specifying the requirement of the task; and the model Q, specifying available computing resources.
Resumo:
The generative topographic mapping (GTM) model was introduced by Bishop et al. (1998, Neural Comput. 10(1), 215-234) as a probabilistic re- formulation of the self-organizing map (SOM). It offers a number of advantages compared with the standard SOM, and has already been used in a variety of applications. In this paper we report on several extensions of the GTM, including an incremental version of the EM algorithm for estimating the model parameters, the use of local subspace models, extensions to mixed discrete and continuous data, semi-linear models which permit the use of high-dimensional manifolds whilst avoiding computational intractability, Bayesian inference applied to hyper-parameters, and an alternative framework for the GTM based on Gaussian processes. All of these developments directly exploit the probabilistic structure of the GTM, thereby allowing the underlying modelling assumptions to be made explicit. They also highlight the advantages of adopting a consistent probabilistic framework for the formulation of pattern recognition algorithms.
Resumo:
Hierarchical visualization systems are desirable because a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex high-dimensional data sets. We extend an existing locally linear hierarchical visualization system PhiVis [1] in several directions: bf(1) we allow for em non-linear projection manifolds (the basic building block is the Generative Topographic Mapping -- GTM), bf(2) we introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree, bf(3) we describe folding patterns of low-dimensional projection manifold in high-dimensional data space by computing and visualizing the manifold's local directional curvatures. Quantities such as magnification factors [3] and directional curvatures are helpful for understanding the layout of the nonlinear projection manifold in the data space and for further refinement of the hierarchical visualization plot. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. We demonstrate the visualization system principle of the approach on a complex 12-dimensional data set and mention possible applications in the pharmaceutical industry.
Resumo:
This thesis is about the study of relationships between experimental dynamical systems. The basic approach is to fit radial basis function maps between time delay embeddings of manifolds. We have shown that under certain conditions these maps are generically diffeomorphisms, and can be analysed to determine whether or not the manifolds in question are diffeomorphically related to each other. If not, a study of the distribution of errors may provide information about the lack of equivalence between the two. The method has applications wherever two or more sensors are used to measure a single system, or where a single sensor can respond on more than one time scale: their respective time series can be tested to determine whether or not they are coupled, and to what degree. One application which we have explored is the determination of a minimum embedding dimension for dynamical system reconstruction. In this special case the diffeomorphism in question is closely related to the predictor for the time series itself. Linear transformations of delay embedded manifolds can also be shown to have nonlinear inverses under the right conditions, and we have used radial basis functions to approximate these inverse maps in a variety of contexts. This method is particularly useful when the linear transformation corresponds to the delay embedding of a finite impulse response filtered time series. One application of fitting an inverse to this linear map is the detection of periodic orbits in chaotic attractors, using suitably tuned filters. This method has also been used to separate signals with known bandwidths from deterministic noise, by tuning a filter to stop the signal and then recovering the chaos with the nonlinear inverse. The method may have applications to the cancellation of noise generated by mechanical or electrical systems. In the course of this research a sophisticated piece of software has been developed. The program allows the construction of a hierarchy of delay embeddings from scalar and multi-valued time series. The embedded objects can be analysed graphically, and radial basis function maps can be fitted between them asynchronously, in parallel, on a multi-processor machine. In addition to a graphical user interface, the program can be driven by a batch mode command language, incorporating the concept of parallel and sequential instruction groups and enabling complex sequences of experiments to be performed in parallel in a resource-efficient manner.
Resumo:
An outline of the state space of planar Couette flow at high Reynolds numbers (Re<105) is investigated via a variety of efficient numerical techniques. It is verified from nonlinear analysis that the lower branch of the hairpin vortex state (HVS) asymptotically approaches the primary (laminar) state with increasing Re. It is also predicted that the lower branch of the HVS at high Re belongs to the stability boundary that initiates a transition to turbulence, and that one of the unstable manifolds of the lower branch of HVS lies on the boundary. These facts suggest HVS may provide a criterion to estimate a minimum perturbation arising transition to turbulent states at the infinite Re limit. © 2013 American Physical Society.
Resumo:
C–C bond-forming, cross-coupling reactions of organohalides with nucleophilic compounds, catalysed by palladium, are amongst the most important chemical reactions available to the synthetic chemist. The intimate mechanisms of these reactions, involving Pd0/PdII redox steps, have been of great historical interest and continue to be so. The myriad of possible mechanisms is reviewed in this chapter. The interplay of mononuclear Pd species with higher order Pd species, e.g. nanoclusters/nanoparticles are considered as being equally important in cross-coupling reaction mechanisms. A focus is placed on trichotomic behaviour of cross-coupling catalytic manifolds, from homogeneous to hybrid homogeneous–heterogeneous to truly heterogeneous behaviour. For the latter, surface chemistry and metal atom leaching (and various experimental techniques) are broadly discussed. It is now clear that mechanism for general cross‐coupling reactions, that is as presented to undergraduate students studying Chemistry degrees across the world, is undoubtedly more complex than first thought. New opportunities for catalyst design have therefore emerged in the area of Pd nanoparticles and nanocatalysis, with some wonderful applications especially in chemical biology, providing a snapshot of what the future might hold.
Resumo:
∗ Partially supported by INTAS grant 97-1644
Resumo:
* The research has been partially supported by Bulgarian Funding Organizations, sponsoring the Algebra Section of the Mathematics Institute, Bulgarian Academy of Sciences, a Contract between the Humboldt Univestit¨at and the University of Sofia, and Grant MM 412 / 94 from the Bulgarian Board of Education and Technology
Resumo:
AMS Subj. Classification: MSC2010: 11F72, 11M36, 58J37
Resumo:
MSC 2010: 30C60