920 resultados para NO-CGMP PATHWAY
Resumo:
Abstract Lipid derived signals mediate many stress and defense responses in multicellular eukaryotes. Among these are the jasmonates, potently active signaling compounds in plants. Jasmonic acid (JA) and 12-oxo-phytodienoic acid (OPDA) are the two best known members of the large jasmonate family. This thesis further investigates their roles as signals using genomic and proteomic approaches. The study is based on a simple genetic model involving two key genes. The first is ALLENE OXIDE SYNTHASE (AOS), encoding the most important enzyme in generating jasmonates. The second is CORONATINE INSENSITIVE 1 (COI1), a gene involved in all currently documented canonical signaling responses. We asked the simple question: do null mutations in AOS and COI1 have analogous effects on the transcriptome ? We found that they do not. If most COI1-dependent genes were also AOS-dependent, the expression of a zinc-finger protein was AOS-dependent but was unaffected by the coi1-1 mutation. We thus supposed that a jasmonate member, most probably OPDA, can alter gene expression partially independently of COI1. Conversely, the expression of at least three genes, one of these is a protein kinase, was shown to be COI1-dependent but did not require a functional AOS protein. We conclude that a non-jasmonate signal might alter gene expression through COIL Proteomic comparison of coi1-1 and aos plants confirmed these observations and highlighted probable protein degradation processes controlled by jasmonates and COI1 in the wounded leaf. This thesis revealed new functions for COI1 and for AOS-generated oxylipins in the jasmonate signaling pathway. Résumé Les signaux dérivés d'acides gras sont des médiateurs de réponses aux stress et de la défense des eucaryotes multicellulaires. Parmi eux, les jasmonates sont de puissants composés de sig¬nalisation chez les plantes. L'acide jasmonique (JA) et l'acide 12-oxo-phytodienoïc (OPDA) sont les deux membres les mieux caractérisés de la grande famille des jasmonates. Cette thèse étudie plus profondément leurs rôles de signalisation en utilisant des approches génomique et protéomique. Cette étude est basée sur un modèle génétique simple n'impliquant que deux gènes. Le premier est PALLENE OXYDE SYNTHASE (AOS) qui encode l'enzyme la plus importante pour la fabrication des jasmonates. Le deuxième est CORONATINE INSENSITIVE 1 (COI1) qui est impliqué dans la totalité des réponses aux jasmonates connues à ce jour. Nous avons posé la question suivante : est-ce que les mutations nulles dans les gènes AOS et COI1 ont des effets analogues sur le transcriptome ? Nous avons trouvé que ce n'était pas le cas. Si la majorité des gènes dépendants de COI1 sont également dépendants d'AOS, l'expression d'un gène codant pour une protéine formée de doigts de zinc n'est pas affectée par la mutation de COI1 tout en étant dépendante d'AOS. Nous avons donc supposé qu'un membre de la famille des jasmonates, probablement OPDA, pouvait modifier l'expression de certains gènes indépendamment de COI1. Inversement, nous avons montré que, tout en étant dépendante de COI1, l'expression d'au moins trois gènes, dont un codant pour une protéine kinase, n'était pas affectée par l'absence d'une protéine AOS fonctionnelle. Nous en avons conclu qu'un signal autre qu'un jasmonate devait modifier l'expression de certains gènes à travers COI1. La comparaison par protéomique de plantes aos et coi1-1 a confirmé ces observations et a mis en évidence un probable processus de dégradation de protéines contrôlé par les jasmonates et COU_ Cette thèse a mis en avant de nouvelles fonctions pour COI1 et pour des oxylipines générées par AOS dans le cadre de la signalisation par les jasmonates.
Resumo:
Background: Current advances in genomics, proteomics and other areas of molecular biology make the identification and reconstruction of novel pathways an emerging area of great interest. One such class of pathways is involved in the biogenesis of Iron-Sulfur Clusters (ISC). Results: Our goal is the development of a new approach based on the use and combination of mathematical, theoretical and computational methods to identify the topology of a target network. In this approach, mathematical models play a central role for the evaluation of the alternative network structures that arise from literature data-mining, phylogenetic profiling, structural methods, and human curation. As a test case, we reconstruct the topology of the reaction and regulatory network for the mitochondrial ISC biogenesis pathway in S. cerevisiae. Predictions regarding how proteins act in ISC biogenesis are validated by comparison with published experimental results. For example, the predicted role of Arh1 and Yah1 and some of the interactions we predict for Grx5 both matches experimental evidence. A putative role for frataxin in directly regulating mitochondrial iron import is discarded from our analysis, which agrees with also published experimental results. Additionally, we propose a number of experiments for testing other predictions and further improve the identification of the network structure. Conclusion: We propose and apply an iterative in silico procedure for predictive reconstruction of the network topology of metabolic pathways. The procedure combines structural bioinformatics tools and mathematical modeling techniques that allow the reconstruction of biochemical networks. Using the Iron Sulfur cluster biogenesis in S. cerevisiae as a test case we indicate how this procedure can be used to analyze and validate the network model against experimental results. Critical evaluation of the obtained results through this procedure allows devising new wet lab experiments to confirm its predictions or provide alternative explanations for further improving the models.
Resumo:
Astrocyte reactivity is a hallmark of neurodegenerative diseases (ND), but its effects on disease outcomes remain highly debated. Elucidation of the signaling cascades inducing reactivity in astrocytes during ND would help characterize the function of these cells and identify novel molecular targets to modulate disease progression. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is associated with reactive astrocytes in models of acute injury, but it is unknown whether this pathway is directly responsible for astrocyte reactivity in progressive pathological conditions such as ND. In this study, we examined whether the JAK/STAT3 pathway promotes astrocyte reactivity in several animal models of ND. The JAK/STAT3 pathway was activated in reactive astrocytes in two transgenic mouse models of Alzheimer's disease and in a mouse and a nonhuman primate lentiviral vector-based model of Huntington's disease (HD). To determine whether this cascade was instrumental for astrocyte reactivity, we used a lentiviral vector that specifically targets astrocytes in vivo to overexpress the endogenous inhibitor of the JAK/STAT3 pathway [suppressor of cytokine signaling 3 (SOCS3)]. SOCS3 significantly inhibited this pathway in astrocytes, prevented astrocyte reactivity, and decreased microglial activation in models of both diseases. Inhibition of the JAK/STAT3 pathway within reactive astrocytes also increased the number of huntingtin aggregates, a neuropathological hallmark of HD, but did not influence neuronal death. Our data demonstrate that the JAK/STAT3 pathway is a common mediator of astrocyte reactivity that is highly conserved between disease states, species, and brain regions. This universal signaling cascade represents a potent target to study the role of reactive astrocytes in ND.
Resumo:
OBJECTIVE: To compare epidural analgesia (EDA) to patient-controlled opioid-based analgesia (PCA) in patients undergoing laparoscopic colorectal surgery. BACKGROUND: EDA is mainstay of multimodal pain management within enhanced recovery pathways [enhanced recovery after surgery (ERAS)]. For laparoscopic colorectal resections, the benefit of epidurals remains debated. Some consider EDA as useful, whereas others perceive epidurals as unnecessary or even deleterious. METHODS: A total of 128 patients undergoing elective laparoscopic colorectal resections were enrolled in a randomized clinical trial comparing EDA versus PCA. Primary end point was medical recovery. Overall complications, hospital stay, perioperative vasopressor requirements, and postoperative pain scores were secondary outcome measures. Analysis was performed according to the intention-to-treat principle. RESULTS: Final analysis included 65 EDA patients and 57 PCA patients. Both groups were similar regarding baseline characteristics. Medical recovery required a median of 5 days (interquartile range [IQR], 3-7.5 days) in EDA patients and 4 days (IQR, 3-6 days) in the PCA group (P = 0.082). PCA patients had significantly less overall complications [19 (33%) vs 35 (54%); P = 0.029] but a similar hospital stay [5 days (IQR, 4-8 days) vs 7 days (IQR, 4.5-12 days); P = 0.434]. Significantly more EDA patients needed vasopressor treatment perioperatively (90% vs 74%, P = 0.018), the day of surgery (27% vs 4%, P < 0.001), and on postoperative day 1 (29% vs 4%, P < 0.001), whereas no difference in postoperative pain scores was noted. CONCLUSIONS: Epidurals seem to slow down recovery after laparoscopic colorectal resections without adding obvious benefits. EDA can therefore not be recommended as part of ERAS pathways in laparoscopic colorectal surgery.
Resumo:
Saccharomyces cerevisiae Grx6 and Grx7 are two monothiol glutaredoxins whose active-site sequences (CSYS and CPYS, respectively) are reminiscent of the CPYC active-site sequence of classical dithiol glutaredoxins. Both proteins contain an N-terminal transmembrane domain which is responsible for their association to membranes of the early secretory pathway vesicles, facing the luminal side. Thus, Grx6 localizes at the endoplasmic reticulum and Golgi compartments, while Grx7 is mostly at the Golgi. Expression of GRX6 is modestly upregulated by several stresses (calcium, sodium, and peroxides) in a manner dependent on the Crz1-calcineurin pathway. Some of these stresses also upregulate GRX7 expression under the control of the Msn2/4 transcription factor. The N glycosylation inhibitor tunicamycin induces the expression of both genes along with protein accumulation. Mutants lacking both glutaredoxins display reduced sensitivity to tunicamycin, although the drug is still able to manifest its inhibitory effect on a reporter glycoprotein. Grx6 and Grx7 have measurable oxidoreductase activity in vivo, which is increased in the presence of tunicamycin. Both glutaredoxins could be responsible for the regulation of the sulfhydryl oxidative state at the oxidant conditions of the early secretory pathway vesicles. However, the differences in location and expression responses against stresses suggest that their functions are not totally overlapping.
Resumo:
Abstract Background: Hypoxia-mediated HIF-1a stabilization and NF-kB activation play a key role in carcinogenesis by fostering cancer cell survival, angiogenesis and tumor invasion. Gangliosides are integral components of biological membranes with an increasingly recognized role as signaling intermediates. In particular, ganglioside GD3 has been characterized as a proapoptotic lipid effector by promoting cell death signaling and suppression of survival pathways. Thus, our aim was to analyze the role of GD3 in hypoxia susceptibility of hepatocarcinoma cells and in vivo tumor growth. Methodology/Principal Findings: We generated and characterized a human hepatocarcinoma cell line stably expressing GD3 synthase (Hep3B-GD3), which catalyzes the synthesis of GD3 from GM3. Despite increased GD3 levels (2-3 fold), no significant changes in cell morphology or growth were observed in Hep3B-GD3 cells compared to wild type Hep3B cells under normoxia. However, exposure of Hep3B-GD3 cells to hypoxia (2% O2) enhanced reactive oxygen species (ROS) generation, resulting in decreased cell survival, with similar findings observed in Hep3B cells exposed to increasing doses of exogenous GD3. In addition, hypoxia-induced c-Src phosphorylation at tyrosine residues, NF-kB activation and subsequent expression of Mn-SOD were observed in Hep3B cells but not in Hep3B-GD3 cells. Moreover, MnTBAP, an antioxidant with predominant SOD mimetic activity, reduced ROS generation, protecting Hep3B-GD3 cells from hypoxia-induced death. Finally, lower tumor growth, higher cell death and reduced Mn-SOD expression were observed in Hep3B-GD3 compared to Hep3B tumor xenografts. Conclusion: These findings underscore a role for GD3 in hypoxia susceptibility by disabling the c-Src/NF-kB survival pathway resulting in lower Mn-SOD expression, which may be of relevance in hepatocellular carcinoma therapy.
Resumo:
The recently discovered apolipoprotein AV (apoAV) gene has been reported to be a key player in modulating plasma triglyceride levels. Here we identify the hepatocyte nuclear factor-4 (HNF-4 ) as a novel regulator of human apoAV gene. Inhibition of HNF-4 expression by small interfering RNA resulted in down-regulation of apoAV. Deletion, mutagenesis, and binding assays revealed that HNF-4 directly regulates human apoAV promoter through DR1 [a direct repeat separated by one nucleotide (nt)], and via a novel element for HNF-4 consisting of an inverted repeat separated by 8 nt (IR8). In addition, we show that the coactivator peroxisome proliferator-activated receptor- coactivator-1 was capable of stimulating the HNF-4 -dependent transactivation of apoAV promoter. Furthermore, analyses in human hepatic cells demonstrated that AMP-activated protein kinase (AMPK) and the MAPK signaling pathway regulate human apoAV expression and suggested that this regulation may be mediated, at least in part, by changes in HNF-4 . Intriguingly, EMSAs and mice with a liver-specific disruption of the HNF-4 gene revealed a species-distinct regulation of apoAV by HNF-4 , which resembles that of a subset of HNF-4 target genes. Taken together, our data provide new insights into the binding properties and the modulation of HNF-4 and underscore the role of HNF-4 in regulating triglyceride metabolism.
Resumo:
The inhibition of phosphatidic acid phosphatase (PAP) activity by propanolol indicates that diacylglycerol (DAG) is required for the formation of transport carriers at the Golgi and for retrograde trafficking to the ER. Here we report that the PAP2 family member lipid phosphate phosphatase 3 (LPP3, also known as PAP2b) localizes in compartments of the secretory pathway from ER export sites to the Golgi complex. The depletion of human LPP3: (i) reduces the number of tubules generated from the ER-Golgi intermediate compartment and the Golgi, with those formed from the Golgi being longer in LPP3-silenced cells than in control cells; (ii) impairs the Rab6-dependent retrograde transport of Shiga toxin subunit B from the Golgi to the ER, but not the anterograde transport of VSV-G or ssDsRed; and (iii) induces a high accumulation of Golgi-associated membrane buds. LPP3 depletion also reduces levels of de novo synthesized DAG and the Golgi-associated DAG contents. Remarkably, overexpression of a catalytically inactive form of LPP3 mimics the effects of LPP3 knockdown on Rab6-dependent retrograde transport. We conclude that LPP3 participates in the formation of retrograde transport carriers at the ER-Golgi interface, where it transitorily cycles, and during its route to the plasma membrane.
Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2
Resumo:
BACKGROUND: The p53 transcription factor is located at the core of a complex wiring of signaling pathways that are critical for the preservation of cellular homeostasis. Only recently it has become clear that p53 regulates the expression of several long intergenic noncoding RNAs (lincRNAs). However, relatively little is known about the role that lincRNAs play in this pathway. RESULTS: Here we characterize a lincRNA named Pint (p53 induced noncoding transcript). We show that Pint is a ubiquitously expressed lincRNA that is finely regulated by p53. In mouse cells, Pint promotes cell proliferation and survival by regulating the expression of genes of the TGF-β, MAPK and p53 pathways. Pint is a nuclear lincRNA that directly interacts with the Polycomb repressive complex 2 (PRC2), and is required for PRC2 targeting of specific genes for H3K27 tri-methylation and repression. Furthermore, Pint functional activity is highly dependent on PRC2 expression. We have also identified Pint human ortholog (PINT), which presents suggestive analogies with the murine lincRNA. PINT is similarly regulated by p53, and its expression significantly correlates with the same cellular pathways as the mouse ortholog, including the p53 pathway. Interestingly, PINT is downregulated in colon primary tumors, while its overexpression inhibits the proliferation of tumor cells, suggesting a possible role as tumor suppressor. CONCLUSIONS: Our results reveal a p53 autoregulatory negative mechanism where a lincRNA connects p53 activation with epigenetic silencing by PRC2. Additionally, we show analogies and differences between the murine and human orthologs, identifying a novel tumor suppressor candidate lincRNA.
Resumo:
OBJECTIVES: Invasive mould infections are associated with a high mortality rate and the emergence of MDR moulds is of particular concern. Calcineurin and its chaperone, the heat shock protein 90 (Hsp90), represent an important pathway for fungal virulence that can be targeted at different levels. We investigated the antifungal activity of compounds directly or indirectly targeting the Hsp90-calcineurin axis against different mould species. METHODS: The in vitro antifungal activity of the anticalcineurin drug FK506 (tacrolimus), the Hsp90 inhibitor geldanamycin, the lysine deacetylase inhibitor trichostatin A and the Hsp70 inhibitor pifithrin-μ was assessed by the standard broth dilution method against 62 clinical isolates of Aspergillus spp. and non-Aspergillus moulds (Mucoromycotina, Fusarium spp., Scedosporium spp., Purpureocillium/Paecilomyces spp. and Scopulariopsis spp.) RESULTS: FK506 had variable antifungal activity against different Aspergillus spp. and was particularly active against Mucor spp. Geldanamycin had moderate antifungal activity against Fusarium spp. and Paecilomyces variotii. Importantly, trichostatin A had good activity against the triazole-resistant Aspergillus ustus and the amphotericin B-resistant Aspergillus terreus as well as the MDR Scedosporium prolificans. Moreover, trichostatin A exhibited synergistic interactions with caspofungin against A. ustus and with geldanamycin against Rhizopus spp. for which none of the other agents showed activity. Pifithrin-μ exhibited little antifungal activity. CONCLUSIONS: Targeting the Hsp90-calcineurin axis at different levels resulted in distinct patterns of susceptibility among different fungal species. Lysine deacetylase inhibition may represent a promising novel antifungal strategy against emerging resistant moulds.
Resumo:
The concentration and ratio of terpenoids in the headspace volatile blend of plants have a fundamental role in the communication of plants and insects. The sesquiterpene (E)-nerolidol is one of the important volatiles with effect on beneficial carnivores for biologic pest management in the field. To optimize de novo biosynthesis and reliable and uniform emission of (E)-nerolidol, we engineered different steps of the (E)-nerolidol biosynthesis pathway in Arabidopsis thaliana. Introduction of a mitochondrial nerolidol synthase gene mediates de novo emission of (E)-nerolidol and linalool. Co-expression of the mitochondrial FPS1 and cytosolic HMGR1 increased the number of emitting transgenic plants (incidence rate) and the emission rate of both volatiles. No association between the emission rate of transgenic volatiles and their growth inhibitory effect could be established. (E)-Nerolidol was to a large extent metabolized to non-volatile conjugates.
Resumo:
Introduction: Germline variants in TP63 have been consistently associated with several tumors, including bladder cancer, indicating the importance of TP53 pathway in cancer genetic susceptibility. However, variants in other related genes, including TP53 rs1042522 (Arg72Pro), still present controversial results. We carried out an in depth assessment of associations between common germline variants in the TP53 pathway and bladder cancer risk. Material and Methods: We investigated 184 tagSNPs from 18 genes in 1,058 cases and 1,138 controls from the Spanish Bladder Cancer/EPICURO Study. Cases were newly-diagnosed bladder cancer patients during 1998–2001. Hospital controls were age-gender, and area matched to cases. SNPs were genotyped in blood DNA using Illumina Golden Gate and TaqMan assays. Cases were subphenotyped according to stage/grade and tumor p53 expression. We applied classical tests to assess individual SNP associations and the Least Absolute Shrinkage and Selection Operator (LASSO)-penalized logistic regression analysis to assess multiple SNPs simultaneously. Results: Based on classical analyses, SNPs in BAK1 (1), IGF1R (5), P53AIP1 (1), PMAIP1 (2), SERINPB5 (3), TP63 (3), and TP73 (1) showed significant associations at p-value#0.05. However, no evidence of association, either with overall risk or with specific disease subtypes, was observed after correction for multiple testing (p-value$0.8). LASSO selected the SNP rs6567355 in SERPINB5 with 83% of reproducibility. This SNP provided an OR = 1.21, 95%CI 1.05–1.38, p-value = 0.006, and a corrected p-value = 0.5 when controlling for over-estimation. Discussion: We found no strong evidence that common variants in the TP53 pathway are associated with bladder cancer susceptibility. Our study suggests that it is unlikely that TP53 Arg72Pro is implicated in the UCB in white Europeans. SERPINB5 and TP63 variation deserve further exploration in extended studies.
Resumo:
Letter to the Editor on Wang M, Wang Q, Wang Z, Zhang X, Pan Y. The molecular evolutionary patterns of the insulin/FOXO signaling pathway
Resumo:
Notch is a membrane inserted protein activated by the membrane-inserted γ-secretase proteolytic complex. The Notch pathway is a potential therapeutic target for the treatment of renal diseases but also controls the function of other cells, requiring cell-targeting of Notch antagonists. Toward selective targeting, we have developed the γ-secretase inhibitor-based prodrugs 13a and 15a as substrates for γ-glutamyltranspeptidase (γ-GT) and/or γ-glutamylcyclotransferase (γ-GCT) as well as aminopeptidase A (APA), which are overexpressed in renal diseases, and have evaluated them in experimental in vitro and in vivo models. In nondiseased mice, the cleavage product from Ac-γ-Glu-γ-secretase inhibitor prodrug 13a (γ-GT-targeting and γ-GCT-targeting) but not from Ac-α-Glu-γ-secretase inhibitor prodrug 15a (APA-targeting) accumulated in kidneys when compared to blood and liver. Potential nephroprotective effects of the γ-secretase inhibitor targeted prodrugs were investigated in vivo in a mouse model of acute kidney injury, demonstrating that the expression of Notch1 and cleaved Notch1 could be selectively down-regulated upon treatment with the Ac-γ-Glu-γ-secretase-inhibitor 13a.
Resumo:
Cells couple their growth and division rate in response to nutrient availability to maintain a constant size. This co-ordination happens either at the G1-S or the G2-M transition of the cell cycle. In the rod-shaped fission yeast, size regulation happens at the G2-M transition prior to mitotic commitment. Recent studies have focused on the role of the DYRK-family protein kinase Pom1, which forms gradients emanating from cell poles and inhibits the mitotic activator kinase Cdr2, present at the cell middle. Pom1 was proposed to inhibit Cdr2 until cells reached a critical size before division. However when and where Pom1 inhibits Cdr2 is not clear as medial Pom1 levels do not change during cell elongation. Here I show that Pom1 gradients are susceptible to environmental changes in glucose. Specifically, upon glucose limitation, Pom1 re-localizes from the poles to the cell sides where it delays mitosis through regulating Cdr2. This re-localization occurs due to microtubule de- stabilization and lateral catastrophes leading to transient deposition of the Pom1 gradient nucleator Tea4 along the cell cortex. As Tea4 localization to cell sides is sufficient to recruit Pom1, this explains the mechanism of Pom1 re-localization. Microtubule destabilization and consequently Tea4 and Pom1 spread depends on the activity of the cAMP-dependent Protein Kinase A (PKA/Pka1), as pka1 mutant cells have stable microtubules and retain polar Tea4 and Pom1 under limited glucose. PKA signaling negatively regulates the microtubule rescue factor CLASP/Cls1, thus reducing its ability to stabilize microtubules. Thus PKA signaling tunes CLASP activity to promote microtubule de-stabilization and Pom1 re-localization upon glucose limitation. I show that the side-localized Pom1 delays mitosis and balances the role of the mitosis promoting, mitogen-associated protein kinase (MAPK) protein Sty1. Thus Pom1 re-localization may serve to buffer cell size upon glucose limitation. -- Afin de maintenir une taille constante, les cellules régulent leur croissance ainsi que leur taux de division selon les nutriments disponibles dans le milieu. Dans la levure fissipare, cette régulation de la taille précède l'engagement mitotique et se fait à la transition entre les phases G2 à M du cycle cellulaire. Des études récentes se sont focalisées sur le rôle de la protéine Pom1, membre de la famille des DYRK kinase. Celle-ci forme un gradient provenant des pôles de la cellule et inhibe l'activateur mitotique Cdr2 présent au centre de la cellule. Le model propose que Pom1 inhibe Cdr2 jusqu'à atteindre une taille critique avant la division. Cependant quand et à quel endroit dans la cellulle Pom1 inhibe Cdr2 n'était pas clair car les niveaux médians de Pom1 ne changent pas au cours de la l'élongation des cellules. Dans cette étude, je montre que les gradients de Pom1 sont sensibles aux changements environnementaux du taux de glucose. Plus spécifiquement, en conditions limitantes de glucose, Pom1 se relocalise des pôles de la cellule pour se distribuer sur les côtés de celle-ci. Par conséquent, un délai d'entrée en mitose est observé dû à l'inhibition Cdr2 par Pom1. Cette délocalisation est due à la déstabilisation des microtubules qui va conduire à une déposition transitoire de Tea4, le nucléateur du gradient de Pom1, tout au long du cortex de la cellule. Comme la localisation de Tea4 sur les côtés de la cellule est suffisante pour recruter la protéine Pom1, ceci explique le mécanisme de relocalisation de celle-ci. La déstabilisation des microtubules et par conséquent la diffusion de Tea4 et Pom1 dépendent de l'activité de la protéine kinase A dépendante de l'AMP cyclique (PKA/Pka1). En absence de pka1, la stabilité des microtubules n'est pas affectée ce qui permet la rétention de Tea4 et Pom1 aux pôles de la cellule même en conditions limitantes de glucose. La signalisation via PKA régule négativement le facteur de sauvetage des microtubules CLASP/Cls1 et permet donc de réduire sa fonction de déstabilisation des microtubules. Ainsi la signalisation via PKA affine l'activité des CLASP pour promouvoir la déstabilisation des microtubules et la relocalisation de Pom1 en conditions limitantes de glucose. Je montre que la localisation sur les côtés retarde l'entrée en mitose et compense l'action de la protéine Sty1, connue pour être une MAPK qui induit l'entrée en mitose. Ainsi, la relocalisation de Pom1 pourrait servir à tamponner la taille de la cellule en condition limitantes de glucose. -- Various cell types in the environment such as bacterial, plant or animal cells have a distinct cellular size. Maintaining a constant cell size is important for fitness in unicellular organisms and for diverse functions in multicellular organisms. Cells regulate their size by coordinating their growth rate to their division rate. This coupling is important otherwise cells would get progressively smaller or larger after each successive cell cycle. In their natural environment cells may face fluctuations in the available nutrient supply. Thus cells have to coordinate their division rate to the variable growth rates shown under different nutrient conditions. During my PhD, I worked with a single-celled rod shaped yeast called the fission yeast. These cells are longer when the nutrient supply is abundant and shorter when the nutrient supply is scarce. A protein that senses changes in the external carbon source (glucose) is called Protein Kinase A (PKA). The rod shape of fission yeast cells is maintained thanks to a structural backbone called the cytoskeleton. One of the components of this backbone is called microtubules, which are small tube like structures spanning the length of the cell. They transport a protein called Tea4, which in turn is important for the proper localization of another protein Pom1 to the cell ends. Pom1 helps to maintain proper shape and size of these rod shaped yeast cells. My thesis work showed that upon reduction in the external nutrient (glucose) levels, microtubules become less stable and show an alteration in their organization. A significant percentage of the microtubules contact the side of the cell instead of touching only the cell tip. This leads to the spreading of the protein Pom1 away from the tips all around the cell periphery. This helps fission yeast cells to maintain the proper size required under these conditions of limited glucose supply. I further showed that the protein PKA regulates microtubule stability and organization and thus Pom1 spreading and maintenance of proper cell size. Thus my work led to the discovery of a novel pathway by which fission yeast cells maintain their size under limited supply of glucose. -- Divers types cellulaires dans l'environnement tels que les bactéries, les plantes ou les cellules animales ont une taille précise. Le maintien d'une taille cellulaire constante est importante pour le fitness des organismes unicellulaire ainsi que pour multiples fonctions dans les organismes multicellulaires. Les cellules régulent leur taille en coordonnant le taux de croissance avec le taux de division. Ce couplage est essentiel sinon les cellules deviendraient progressivement plus petites ou plus grandes après chaque cycle cellulaire. Dans leur habitat naturels les cellules peuvent faire face a des fluctuations dans le taux de nutriment disponible. Les cellules doivent donc coordonner leur taux de division aux taux variables de croissances perçus dans les différentes conditions nutritionnels. Pendant ma thèse, j'ai travaillée sur une levure unicellulaire, en forme de bâtonnet, nommé levure fissipare ou levure de fission. La taille de ces cellules est plus grande quand le taux de nutriments est grand et plus courte quand celui-ci est plus faible. Une protéine qui perçoit les changements dans le taux externe de la source de carbone (glucose) est nommée PKA pour protéine kinase A. La forme en bâtonnet de la cellule est due aux caractères structuraux du cytosquelette. Une composante importante de ce cytosquelette sont les microtubules, dont la structures ressemble à des petit tubes qui vont d'un bout à l'autre de la cellule. Ces microtubules transportent une protéine importante nommée Tea4 qui à leur tour importante pour la bonne localisation d'une autre protéine Pom1 aux extrémités de la cellule. La protéine Pom1 aide à maintenir la taille appropriée des levures fissipares. Mon travail de thèse a montré qu'en présence de taux faible de nutriments (glucose) les microtubules deviennent de moins en moins stables et montrent une désorganisation globale. Un pourcentage significatif des microtubules touche les côtés de la cellule aux lieu d'atteindre uniquement les extrémités. Ceci a pour conséquence une diffusion de Pom1 tout au long du cortex de la cellule. Ceci aide les levures fissipares à maintenir la taille appropriée pendant ce stress nutritionnel. De plus, je montre que PKA régule la stabilité et l'organisation des microtubules et par conséquent la diffusion de Pom1 et le maintien d'une taille constante. En conclusion, mon travail a conduit à la découverte d'un nouveau mécanisme par lequel la levure fissipare maintient sa taille dans des conditions limitantes en glucose.