931 resultados para NIGHT SNAKE
Resumo:
Obstructive sleep apnea (OSA) has been associated with an increased risk of atherothrombotic events. A prothrombotic state might partially explain this link. This study investigated OSA patients' day/night rhythm of several prothrombotic markers and their potential changes with therapeutic continuous positive airway pressure (CPAP).
Resumo:
Mixed Media 39 x 42"
Resumo:
Mixed Media 40 x 36"
Resumo:
Popular belief holds that the lunar cycle affects human physiology, behaviour and health. We examined the influence of moon phase on sleep duration in a secondary analysis of a feasibility study of mobile telephone base stations and sleep quality. We studied 31 volunteers (18 women and 13 men, mean age 50 years) from a suburban area of Switzerland longitudinally over 6 weeks, including two full moons. Subjective sleep duration was calculated from sleep diary data. Data were analysed using multiple linear regression models with random effects. Mean sleep duration was 6 h 49 min. Subjective sleep duration varied with the lunar cycle, from 6 h 41 min at full moon to 7 h 00 min at new moon (P < 0.001). Average sleep duration was shortened by 68 min during the week compared with weekends (P < 0.001). Men slept 17 min longer than women (P < 0.001) and sleep duration decreased with age (P < 0.001). There was also evidence that rating of fatigue in the morning was associated with moon phase, with more tiredness (P = 0.027) at full moon. The study was designed for other purposes and the association between lunar cycle and sleep duration will need to be confirmed in further studies.
Resumo:
Snake venoms are complex mixtures of biologically active proteins and peptides. Many affect haemostasis by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium. Snake venom components are classified into various families, such as serine proteases, metalloproteinases, C-type lectin-like proteins, disintegrins and phospholipases. Snake venom C-type lectin-like proteins have a typical fold resembling that in classic C-type lectins such as the selectins and mannose-binding proteins. Many snake venom C-type lectin-like proteins have now been characterized, as heterodimeric structures with alpha and beta subunits that often form large molecules by multimerization. They activate platelets by binding to VWF or specific receptors such as GPIb, alpha2beta1 and GPVI. Simple heterodimeric GPIb-binding molecules mainly inhibit platelet functions, whereas multimeric ones activate platelets. A series of tetrameric snake venom C-type lectin-like proteins activates platelets by binding to GPVI while another series affects platelet function via integrin alpha2beta1. Some act by inducing VWF to bind to GPIb. Many structures of these proteins, often complexed with their ligands, have been determined. Structure-activity studies show that these proteins are quite complex despite similar backbone folding. Snake C-type lectin-like proteins often interact with more than one platelet receptor and have complex mechanisms of action.
Resumo:
Stejnulxin, a novel snake C-type lectin-like protein with potent platelet activating activity, was purified and characterized from Trimeresurus stejnegeri venom. Under non-reducing conditions, it migrated on a SDS-polyacrylamide gel with an apparent molecular mass of 120 kDa. On reduction, it separated into three polypeptide subunits with apparent molecular masses of 16 kDa (alpha), 20 kDa (beta1) and 22 kDa (beta2), respectively. The complete amino acid sequences of its subunits were deduced from cloned cDNAs. The N-terminal sequencing and cDNA cloning indicated that beta1 and beta2 subunits of stejnulxin have identical amino acid sequences and each contains two N-glycosylation sites. Accordingly, the molecular mass difference between beta1 and beta2 is caused by glycosylation heterogenity. The subunit amino acid sequences of stejnulxin are similar to those of convulxin, with sequence identities of 52.6% and 66.4% for the alpha and beta, respectively. Stejnulxin induced human platelet aggregation in a dose-dependent manner. Antibodies against alphaIIbbeta3 inhibited the aggregation response to stejnulxin, indicating that activation of alphaIIbbeta3 and binding of fibrinogen are involved in stejnulxin-induced platelet aggregation. Antibodies against GPIbalpha or alpha2beta1 as well as echicetin or rhodocetin had no significant effect on stejnulxin-induced platelet aggregation. However, platelet activation induced by stejnulxin was blocked by anti-GPVI antibodies. In addition, stejnulxin induced a tyrosine phosphorylation profile in platelets that resembled that produced by convulxin. Biotinylated stejnulxin bound specifically to platelet membrane GPVI.
Resumo:
L-amino acid oxidases are widely found in snake venoms and are thought to contribute to the toxicity upon envenomation. The mechanism of these toxic effects and whether they result from the enzymatic activity are still uncertain although many papers describing the biological and pharmacological effects of L-amino acid oxidases have appeared recently, which provide more information about their action on platelets, induction of apoptosis, haemorrhagic effects, and cytotoxicity. This review summarizes the physiochemical properties, structural characteristics and various biological functions of snake venom L-amino acid oxidases (SV-LAAOs). In addition, the putative mechanisms of SV-LAAO-induced platelet aggregation and apoptosis of cells are discussed in more detail.
Resumo:
Alboluxin, a potent platelet activator, was purified from Trimeresurus albolabris venom with a mass of 120 kDa non-reduced and, after reduction, subunits of 17 and 24 kDa. Alboluxin induced a tyrosine phosphorylation profile in platelets that resembles those produced by collagen and convulxin, involving the time dependent tyrosine phosphorylation of Fc receptor gamma chain (Fc gamma), phospholipase Cgamma2 (PLCgamma2), LAT and p72SYK. Antibodies against both GPIb and GPVI inhibited platelet aggregation induced by alboluxin, whereas antibodies against alpha2beta1 had no effect. Inhibition of alphaIIb beta3 reduced the aggregation response to alboluxin, as well as tyrosine phosphorylation of platelet proteins, showing that activation of alphaIIb beta3 and binding of fibrinogen are involved in alboluxin-induced platelet aggregation and it is not simply agglutination. N-terminal sequence data from the beta-subunit of alboluxin indicates that it belongs to the snake C-type lectin family. The C-type lectin subunits are larger than usual possibly due to post-translational modifications such as glycosylation. Alboluxin is a hexameric (alphabeta)3 snake C-type lectin which activates platelets via both GPIb and GPVI.
Resumo:
Snake venoms are very complex mixtures of biologically active proteins and peptides that may affect hemostasis in many ways, by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium. They have been classified into various families, including serine proteases, metalloproteinases, C-type lectins, disintegrins and phospholipases. The various members of a particular family act selectively on different blood coagulation factors, blood cells or tissues. Venom proteins affect platelet function in particular by binding to and blocking or clustering and activating receptors or by cleaving receptors or von Willebrand factor. They may also activate protease-activated receptors or modulate ADP release or thromboxane A(2) formation. L-amino acid oxidases activate platelets by producing H(2)O(2). Many of these purified components are valuable tools in platelet research, providing new information about receptor function and signaling.
Resumo:
The snake C-type lectins are a major group of proteins present in venoms that fold to a structure with similarities to classic C-type lectins. The loop that would be involved in calcium and sugar binding is truncated and heterodimers are linked by a disulphide bond and by swapping loop domains between the subunits. M any of these C-type lectins interact with platelet receptors to inhibit or induce platelet activation. The use of these C-type lectins to investigate platelet function is discussed and illustrated with specific examples.
Resumo:
Snake venoms are complex mixtures of biologically active proteins and peptides. Many of them affect hemostasis by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium. Based on sequence, these snake venom components have been classified into various families, such as serine proteases, metalloproteinases, C-type lectins, disintegrins and phospholipases. The various members of a particular family act selectively on different blood coagulation factors, blood cells or tissues. For almost every factor involved in coagulation or fibrinolysis there is a venom protein that can activate or inactivate it. Venom proteins affect platelet function by binding or degrading vWF or platelet receptors, activating protease-activated receptors or modulating ADP release and thromboxane A2 formation. Some venom enzymes cleave key basement membrane components and directly affect capillary blood vessels to cause hemorrhaging. L-Amino acid oxidases activate platelets via H2O2 production.
Resumo:
Snake venoms contain components that affect the prey either by neurotoxic or haemorrhagic effects. The latter category affect haemostasis either by inhibiting or activating platelets or coagulation factors. They fall into several types based upon structure and mode of action. A major class is the snake C-type lectins or C-type lectin-like family which shows a typical folding like that in classic C-type lectins such as the selectins and mannose-binding proteins. Those in snake venoms are mostly based on a heterodimeric structure with two subunits alpha and beta, which are often oligomerized to form larger molecules. Simple heterodimeric members of this family have been shown to inhibit platelet functions by binding to GPIb but others activate platelets via the same receptor. Some that act via GPIb do so by inducing von Willebrand factor to bind to it. Another series of snake C-type lectins activate platelets by binding to GPVI while yet another series uses the integrin alpha(2)beta(1) to affect platelet function. The structure of more and more of these C-type lectins have now been, and are being, determined, often together with their ligands, casting light on binding sites and mechanisms. In addition, it is relatively easy to model the structure of the C-type lectins if the primary structure is known. These studies have shown that these proteins are quite a complex group, often with more than one platelet receptor as ligand and although superficially some appear to act as inhibitors, in fact most function by inducing thrombocytopenia by various routes. The relationship between structure and function in this group of venom proteins will be discussed.
Resumo:
Mucetin (Trimeresurus mucrosquamatus venom activator, TMVA) is a potent platelet activator purified from Chinese habu (Trimeresurus mucrosquamatus) venom. It belongs to the snake venom heterodimeric C-type lectin family and exists in several multimeric forms. We now show that binding to platelet glycoprotein (GP) Ib is involved in mucetin-induced platelet aggregation. Antibodies against GPIb as well as the GPIb-blocking C-type lectin echicetin inhibited mucetin-induced platelet aggregation. Binding of GPIb was confirmed by affinity chromatography and Western blotting. Antibodies against GPVI inhibited convulxin- but not mucetin-induced aggregation. Signalling by mucetin involved rapid tyrosine phosphorylation of a number of proteins including Syk, Src, LAT and PLC gamma 2. Mucetin-induced phosphorylation of the Fc gamma chain of platelet was greatly promoted by inhibition of alpha(IIb)beta(3) by the peptidomimetic EMD 132338, suggesting that phosphatases downstream of alpha(IIb)beta(3) activation are involved in dephosphorylation of Fc gamma. Unlike other multimeric snake C-type lectins that act via GPIb and only agglutinate platelets, mucetin activates alpha(IIb)beta(3). Inhibition of alpha(IIb)beta(3) strongly reduced the aggregation response to mucetin, indicating that activation of alpha(IIb)beta(3) and binding of fibrinogen are involved in mucetin-induced platelet aggregation. Apyrase and aspirin also inhibit platelet aggregation induced by mucetin, suggesting that ADP and thromboxane A2 are involved in autocrine feedback. Sequence and structural comparison with closely related members of this protein family point to features that may be responsible for the functional differences.