896 resultados para NH
Resumo:
A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (> 11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.
Resumo:
A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (> 11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.
Resumo:
This special issue of Natural Hazards and Earth System Sciences (NHESS) contains eight papers presented as oral or poster contributions in the Natural Hazards NH-1.2 session on"Extreme events induced by weather and climate change: evaluation, forecasting and proactive planning", held at the European Geosciences Union (EGU) General Assembly in Vienna, Austria, on 13-18 April 2008. The aim of the session was to provide an international forum for presenting new results and for discussing innovative ideas and concepts on extreme hydro-meteorological events, including: (i) the assessment of the risk posed by the extreme events, (ii) the expected changes in the frequency and intensity of the events driven by a changing climate and by multiple human- induced causes, (iii) new modelling approaches and original forecasting methods to predict extreme events and their consequences, and (iv) strategies for hazard mitigation and risk reduction, and for a improved adaptation to extreme hydro-meteorological events ...
Resumo:
The EGU Plinius Conference on Mediterranean Storms was established in 1999 within the framework of the Interdisciplinary Working Group on Natural Hazards (IWG-NH) of the former European Geophysical Society (EGS)- since 2002,European Geosciences Union (EGU). Since its advent, the Plinius Conference series has provided a crucial interdisciplinary forum for improving our understanding of hazardous storms over the Mediterranean basin that are capable of producing strong winds, heavy rains, explosive landslides, devastating flash floods and other related extremes ...
Resumo:
BACKGROUND: Health-related quality of life (HRQOL) levels and their determinants in those living in nursing homes are unclear. The aim of this study was to investigate different HRQOL domains as a function of the degree of cognitive impairment and to explore associations between them and possible determinants of HRQOL. METHOD: Five HRQOL domains using the Minimum Data Set - Health Status Index (MDS-HSI) were investigated in a large sample of nursing home residents depending on cognitive performance levels derived from the Cognitive Performance Scale. Large effect size associations between clinical variables and the different HRQOL domains were looked for. RESULTS: HRQOL domains are impaired to variable degrees but with similar profiles depending on the cognitive performance level. Basic activities of daily living are a major factor associated with some but not all HRQOL domains and vary little with the degree of cognitive impairment. LIMITATIONS: This study is limited by the general difficulties related to measuring HRQOL in patients with cognitive impairment and the reduced number of variables considered among those potentially influencing HRQOL. CONCLUSION: HRQOL dimensions are not all linearly associated with increasing cognitive impairment in NH patients. Longitudinal studies are required to determine how the different HRQOL domains evolve over time in NH residents.
Resumo:
We report on the results of the spectral and timing analysis of a BeppoSAX observation of the microquasar system LS 5039/RX J1826.2-1450. The source was found in a low-flux state with Fx(1-10 keV)= 4.7 x 10^{-12} erg cm^{-2} s^{-1}, which represents almost one order of magnitude lower than a previous RXTE observation 2.5 years before. The 0.1--10 keV spectrum is described by an absorbed power-law continuum with photon-number spectral index Gamma=1.8+-0.2 and hydrogen column density of NH=1.0^{+0.4}_{-0.3} x 10^{22} cm^{-2}. According to the orbital parameters of the system the BeppoSAX observation covers the time of an X-ray eclipse should one occur. However, the 1.6-10 keV light curve does not show evidence for such an event, which allows us to give an upper limit to the inclination of the system. The low X-ray flux detected during this observation is interpreted as a decrease in the mass accretion rate onto the compact object due to a decrease in the mass-loss rate from the primary.
Resumo:
"Live High-Train Low" (LHTL) training can alter oxidative status of athletes. This study compared prooxidant/antioxidant balance responses following two LHTL protocols of the same duration and at the same living altitude of 2250 m in either normobaric (NH) or hypobaric (HH) hypoxia. Twenty-four well-trained triathletes underwent the following two 18-day LHTL protocols in a cross-over and randomized manner: Living altitude (PIO2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg in NH and HH, respectively); training "natural" altitude (~1000-1100 m) and training loads were precisely matched between both LHTL protocols. Plasma levels of oxidative stress [advanced oxidation protein products (AOPP) and nitrotyrosine] and antioxidant markers [ferric-reducing antioxidant power (FRAP), superoxide dismutase (SOD) and catalase], NO metabolism end-products (NOx) and uric acid (UA) were determined before (Pre) and after (Post) the LHTL. Cumulative hypoxic exposure was lower during the NH (229 ± 6 hrs.) compared to the HH (310 ± 4 hrs.; P<0.01) protocol. Following the LHTL, the concentration of AOPP decreased (-27%; P<0.01) and nitrotyrosine increased (+67%; P<0.05) in HH only. FRAP was decreased (-27%; P<0.05) after the NH while was SOD and UA were only increased following the HH (SOD: +54%; P<0.01 and UA: +15%; P<0.01). Catalase activity was increased in the NH only (+20%; P<0.05). These data suggest that 18-days of LHTL performed in either NH or HH differentially affect oxidative status of athletes. Higher oxidative stress levels following the HH LHTL might be explained by the higher overall hypoxic dose and different physiological responses between the NH and HH.
Resumo:
From 6 to 8 November 1982 one of the most catastrophic flash-flood events was recorded in the Eastern Pyrenees affecting Andorra and also France and Spain with rainfall accumulations exceeding 400 mm in 24 h, 44 fatalities and widespread damage. This paper aims to exhaustively document this heavy precipitation event and examines mesoscale simulations performed by the French Meso-NH non-hydrostatic atmospheric model. Large-scale simulations show the slow-evolving synoptic environment favourable for the development of a deep Atlantic cyclone which induced a strong southerly flow over the Eastern Pyrenees. From the evolution of the synoptic pattern four distinct phases have been identified during the event. The mesoscale analysis presents the second and the third phase as the most intense in terms of rainfall accumulations and highlights the interaction of the moist and conditionally unstable flows with the mountains. The presence of a SW low level jet (30 m s-1) around 1500 m also had a crucial role on focusing the precipitation over the exposed south slopes of the Eastern Pyrenees. Backward trajectories based on Eulerian on-line passive tracers indicate that the orographic uplift was the main forcing mechanism which triggered and maintained the precipitating systems more than 30 h over the Pyrenees. The moisture of the feeding flow mainly came from the Atlantic Ocean (7-9 g kg-1) and the role of the Mediterranean as a local moisture source was very limited (2-3 g kg-1) due to the high initial water vapour content of the parcels and the rapid passage over the basin along the Spanish Mediterranean coast (less than 12 h).
Resumo:
OBJECTIVE: The primary end points of this study were safety and efficacy of early cannulation of the Flixene graft (Maquet-Atrium Medical, Hudson, NH). Secondary end points were complications and patency. METHODS: This is a prospective single-center nonrandomized study. Study data included patient characteristics; history of vascular access; operative technique; interval between implantation and initial cannulation; complications; and patency at 1 month, 3 months, and every 6 months. Patency rates were estimated by the Kaplan-Meier method. RESULTS: Between January 2011 and September 2013, a total of 46 Flixene grafts were implanted in 44 patients (27 men) with a mean age of 63 years. The implantation site was the upper arm in 67% of cases, the forearm in 11%, and the thigh in 22%. Seven grafts were never cannulated during the study period. Of the remaining 39 grafts, 32 (82%) were successfully cannulated within the first week after implantation, including 16 (41%) on the first day. The median interval from implantation to initial cannulation was 2 days (interquartile range, 1-3 days). The median follow-up was 223.5 days (interquartile range, 97-600 days). Five hematomas occurred, but only one required surgical revision. Primary assisted and secondary patency rates were 65% and 86%, respectively, at 6 months and 56% and 86%, respectively, at 1 year. CONCLUSIONS: This study suggests that cannulation of the Flixene graft within 1 week after implantation is safe and effective. Early cannulation avoids or shortens the need for a temporary catheter. One-year patency rates appeared to be comparable to those achieved with conventional grafts, but long-term follow-up and randomized controlled studies will be needed to confirm this finding.
Resumo:
PURPOSE: Slight physiological differences between acute exposure in normobaric hypoxia (NH) and hypobaric hypoxia (HH) have been reported. Taken together, these differences suggest different physiological responses to hypoxic exposure to a simulated altitude (NH) versus a terrestrial altitude (HH). For this purpose, in the present study, we aimed to directly compare the time-trial performance after acute hypoxia exposure (26 h, 3450 min) by the same subjects under three different conditions: NH, HH, and normobaric normoxia (NN). Based on all of the preceding studies examining the differences among these hypoxic conditions, we hypothesized greater performance impairment in HH than in NH. METHODS: The experimental design consisted of three sessions: NN (Sion: FiO2, 20.93), NH (Sion, hypoxic room: FiO2, 13.6%; barometric pressure, 716 mm Hg), and HH (Jungfraujoch: FiO2, 20.93; barometric pressure, 481 mm Hg). The performance was evaluated at the end of each session with a cycle time trial of 250 kJ. RESULTS: The mean time trial duration in NN was significantly shorter than under the two hypoxic conditions (P < 0.001). In addition, the mean duration in NH was significantly shorter than that in HH (P < 0.01). The mean pulse oxygen saturation during the time trial was significantly lower for HH than for NH (P < 0.05), and it was significantly higher in NN than for the two other sessions (P < 0.001). CONCLUSION: As previously suggested, HH seems to be a more stressful stimulus, and NH and HH should not be used interchangeability when endurance performance is the main objective. The principal factor in this performance difference between hypoxic conditions seemed to be the lower peripheral oxygen saturation in HH at rest, as well as during exercise.
Resumo:
PURPOSE: We investigated the changes in physiological and performance parameters after a Live High-Train Low (LHTL) altitude camp in normobaric (NH) or hypobaric hypoxia (HH) to reproduce the actual training practices of endurance athletes using a crossover-designed study. METHODS: Well-trained triathletes (n = 16) were split into two groups and completed two 18-day LTHL camps during which they trained at 1100-1200 m and lived at 2250 m (P i O2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg) under NH (hypoxic chamber; FiO2 18.05 ± 0.03%) or HH (real altitude; barometric pressure 580.2 ± 2.9 mmHg) conditions. The subjects completed the NH and HH camps with a 1-year washout period. Measurements and protocol were identical for both phases of the crossover study. Oxygen saturation (S p O2) was constantly recorded nightly. P i O2 and training loads were matched daily. Blood samples and VO2max were measured before (Pre-) and 1 day after (Post-1) LHTL. A 3-km running-test was performed near sea level before and 1, 7, and 21 days after training camps. RESULTS: Total hypoxic exposure was lower for NH than for HH during LHTL (230 vs. 310 h; P < 0.001). Nocturnal S p O2 was higher in NH than in HH (92.4 ± 1.2 vs. 91.3 ± 1.0%, P < 0.001). VO2max increased to the same extent for NH and HH (4.9 ± 5.6 vs. 3.2 ± 5.1%). No difference was found in hematological parameters. The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time. CONCLUSION: Increases in VO2max and performance enhancement were similar between NH and HH conditions.
Resumo:
PURPOSE: To compare hemoglobin mass (Hbmass) changes during an 18-d live high-train low (LHTL) altitude training camp in normobaric hypoxia (NH) and hypobaric hypoxia (HH). METHODS: Twenty-eight well-trained male triathletes were split into three groups (NH: n = 10, HH: n = 11, control [CON]: n = 7) and participated in an 18-d LHTL camp. NH and HH slept at 2250 m, whereas CON slept, and all groups trained at altitudes <1200 m. Hbmass was measured in duplicate with the optimized carbon monoxide rebreathing method before (pre-), immediately after (post-) (hypoxic dose: 316 vs 238 h for HH and NH), and at day 13 in HH (230 h, hypoxic dose matched to 18-d NH). Running (3-km run) and cycling (incremental cycling test) performances were measured pre and post. RESULTS: Hbmass increased similar in HH (+4.4%, P < 0.001 at day 13; +4.5%, P < 0.001 at day 18) and NH (+4.1%, P < 0.001) compared with CON (+1.9%, P = 0.08). There was a wide variability in individual Hbmass responses in HH (-0.1% to +10.6%) and NH (-1.4% to +7.7%). Postrunning time decreased in HH (-3.9%, P < 0.001), NH (-3.3%, P < 0.001), and CON (-2.1%, P = 0.03), whereas cycling performance changed nonsignificantly in HH and NH (+2.4%, P > 0.08) and remained unchanged in CON (+0.2%, P = 0.89). CONCLUSION: HH and NH evoked similar Hbmass increases for the same hypoxic dose and after 18-d LHTL. The wide variability in individual Hbmass responses in HH and NH emphasizes the importance of individual Hbmass evaluation of altitude training.
Resumo:
We analyse vibrational frequencies of 168 compounds with the AM1 model concerning its experimentally observed gaseous frequencies. Stretching of CH, NH, OH and CO bonds, its related bending frequencies, and the CC frame movements are the studied vibrations. The results show problems with the AM1 vibrational splittings. Often symmetric stretching frequencies, like in CH3, CH2 and NH3, appear switched with the corresponding antisymmetrical ones. Among the studied vibrations many stretchings are overestimated, while bendings oscillate around experimental values. Fluorine stretchings, NN, OO, CH, double and triples CC bonds and cyclic hydrocarbon breathing modes are always overestimated while torsions, umbrella modes and OH/SH stretching are, in average, underestimated. Graphical analysis show that compounds with the lowest molecular masses are the ones with the largest difference to the experimental values. From our results it is not possible to fit confortably the calculated frequencies by a simple linear relationship of the type, n(obs)=a*n(AM1). Better aggreement is obtained when different curves are adjusted for the stretching and bending modes, and when a complete linear function is used. Among our studies the best obtained statistical results are for CH, NH and OH. The conclusions obtained in this work will improve the AM1 calculated frequencies leading to accurate results for these properties.
Resumo:
BACKGROUND AND PURPOSE Kyotorphin (KTP; L-Tyr-L-Arg), an endogenous neuropeptide, is potently analgesic when delivered directly to the central nervous system. Its weak analgesic effects after systemic administration have been explained by inability to cross the blood-brain barrier (BBB) and detract from the possible clinical use of KTP as an analgesic. In this study, we aimed to increase the lipophilicity of KTP by amidation and to evaluate the analgesic efficacy of a new KTP derivative (KTP-amide - KTP-NH 2). EXPERIMENTAL APPROACH We synthesized KTP-NH 2. This peptide was given systemically to assess its ability to cross the BBB. A wide range of pain models, including acute, sustained and chronic inflammatory and neuropathic pain, were used to characterize analgesic efficacies of KTP-NH 2. Binding to opioid receptors and toxicity were also measured. KEY RESULTS KTP-NH 2, unlike its precursor KTP, was lipophilic and highly analgesic following systemic administration in several acute and chronic pain models, without inducing toxic effects or affecting motor responses and blood pressure. Binding to opioid receptors was minimal. KTP-NH 2 inhibited nociceptive responses of spinal neurons. Its analgesic effects were prevented by intrathecal or i.p. administration of naloxone. CONCLUSIONS AND IMPLICATIONS Amidation allowed KTP to show good analgesic ability after systemic delivery in acute and chronic pain models. The indirect opioid-mediated actions of KTP-NH 2 may explain why this compound retained its analgesic effects although the usual side effects of opioids were absent, which is a desired feature in next-generation pain medications
Resumo:
Eu3+ luminescence and EXAFS (Extended X-ray Absorption Fine Structure) results are presented for organic-inorganic hybrid gel hosts composed of a siliceous network to which small chains of oxyethylene units are covalently grafted by means of urea bridges. Coordination numbers for Eu3+ ions range from 12.8 to 9.7 with increasing Eu3+ concentration while the Eu3+-first neighbours mean distance is found to be constant at 2.48-2.49 Å in the same concentration range. Emission spectra display a broad band in the green/blue spectral region superposed to narrow lines appearing in the yellow/red region in such a way that for the eyes emission appears white. The broad band is assigned to intrinsic NH groups emission and also to electron-hole recombination in the nanosised siliceous domains. The narrow lines are assigned to intra-4f6, 5D0->7F0-4 Eu3+ transitions and from the energy position of the 7F0-4 levels a mean distance could be calculated for the Eu3+-first neighbours. The calculated results are in good agreement with the experimental ones obtained from EXAFS analysis.