829 resultados para NETWORK MODEL
Resumo:
For the further noise reduction in the future, the traffic management which controls traffic flow and physical distribution is important. To conduct the measure by the traffic management effectively, it is necessary to apply the model for predicting the traffic flow in the citywide road network. For this purpose, the existing model named AVENUE was used as a macro-traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model, and the new road traffic noise prediction model was established. By using this prediction model, the noise map of entire city can be made. In this study, first, the change of traffic flow on the road network after the establishment of new roads was estimated, and the change of the road traffic noise caused by the new roads was predicted. As a result, it has been found that this prediction model has the ability to estimate the change of noise map by the traffic management. In addition, the macro-traffic flow model and our conventional micro-traffic flow model were combined, and the coverage of the noise prediction model was expanded.
Resumo:
Organizations from every industry sector seek to enhance their business performance and competitiveness through the deployment of contemporary information systems (IS), such as Enterprise Systems (ERP). Investments in ERP are complex and costly, attracting scrutiny and pressure to justify their cost. Thus, IS researchers highlight the need for systematic evaluation of information system success, or impact, which has resulted in the introduction of varied models for evaluating information systems. One of these systematic measurement approaches is the IS-Impact Model introduced by a team of researchers at Queensland University of technology (QUT) (Gable, Sedera, & Chan, 2008). The IS-Impact Model is conceptualized as a formative, multidimensional index that consists of four dimensions. Gable et al. (2008) define IS-Impact as "a measure at a point in time, of the stream of net benefits from the IS, to date and anticipated, as perceived by all key-user-groups" (p.381). The IT Evaluation Research Program (ITE-Program) at QUT has grown the IS-Impact Research Track with the central goal of conducting further studies to enhance and extend the IS-Impact Model. The overall goal of the IS-Impact research track at QUT is "to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice" (Gable, 2009). In order to achieve that, the IS-Impact research track advocates programmatic research having the principles of tenacity, holism, and generalizability through extension research strategies. This study was conducted within the IS-Impact Research Track, to further generalize the IS-Impact Model by extending it to the Saudi Arabian context. According to Hofsted (2012), the national culture of Saudi Arabia is significantly different from the Australian national culture making the Saudi Arabian culture an interesting context for testing the external validity of the IS-Impact Model. The study re-visits the IS-Impact Model from the ground up. Rather than assume the existing instrument is valid in the new context, or simply assess its validity through quantitative data collection, the study takes a qualitative, inductive approach to re-assessing the necessity and completeness of existing dimensions and measures. This is done in two phases: Exploratory Phase and Confirmatory Phase. The exploratory phase addresses the first research question of the study "Is the IS-Impact Model complete and able to capture the impact of information systems in Saudi Arabian Organization?". The content analysis, used to analyze the Identification Survey data, indicated that 2 of the 37 measures of the IS-Impact Model are not applicable for the Saudi Arabian Context. Moreover, no new measures or dimensions were identified, evidencing the completeness and content validity of the IS-Impact Model. In addition, the Identification Survey data suggested several concepts related to IS-Impact, the most prominent of which was "Computer Network Quality" (CNQ). The literature supported the existence of a theoretical link between IS-Impact and CNQ (CNQ is viewed as an antecedent of IS-Impact). With the primary goal of validating the IS-Impact model within its extended nomological network, CNQ was introduced to the research model. The Confirmatory Phase addresses the second research question of the study "Is the Extended IS-Impact Model Valid as a Hierarchical Multidimensional Formative Measurement Model?". The objective of the Confirmatory Phase was to test the validity of IS-Impact Model and CNQ Model. To achieve that, IS-Impact, CNQ, and IS-Satisfaction were operationalized in a survey instrument, and then the research model was assessed by employing the Partial Least Squares (PLS) approach. The CNQ model was validated as a formative model. Similarly, the IS-Impact Model was validated as a hierarchical multidimensional formative construct. However, the analysis indicated that one of the IS-Impact Model indicators was insignificant and can be removed from the model. Thus, the resulting Extended IS-Impact Model consists of 4 dimensions and 34 measures. Finally, the structural model was also assessed against two aspects: explanatory and predictive power. The analysis revealed that the path coefficient between CNQ and IS-Impact is significant with t-value= (4.826) and relatively strong with â = (0.426) with CNQ explaining 18% of the variance in IS-Impact. These results supported the hypothesis that CNQ is antecedent of IS-Impact. The study demonstrates that the quality of Computer Network affects the quality of the Enterprise System (ERP) and consequently the impacts of the system. Therefore, practitioners should pay attention to the Computer Network quality. Similarly, the path coefficient between IS-Impact and IS-Satisfaction was significant t-value = (17.79) and strong â = (0.744), with IS-Impact alone explaining 55% of the variance in Satisfaction, consistent with results of the original IS-Impact study (Gable et al., 2008). The research contributions include: (a) supporting the completeness and validity of IS-Impact Model as a Hierarchical Multi-dimensional Formative Measurement Model in the Saudi Arabian context, (b) operationalizing Computer Network Quality as conceptualized in the ITU-T Recommendation E.800 (ITU-T, 1993), (c) validating CNQ as a formative measurement model and as an antecedent of IS Impact, and (d) conceptualizing and validating IS-Satisfaction as a reflective measurement model and as an immediate consequence of IS Impact. The CNQ model provides a framework to perceptually measure Computer Network Quality from multiple perspectives. The CNQ model features an easy-to-understand, easy-to-use, and economical survey instrument.
Resumo:
Objective: Effective management of multi-resistant organisms is an important issue for hospitals both in Australia and overseas. This study investigates the utility of using Bayesian Network (BN) analysis to examine relationships between risk factors and colonization with Vancomycin Resistant Enterococcus (VRE). Design: Bayesian Network Analysis was performed using infection control data collected over a period of 36 months (2008-2010). Setting: Princess Alexandra Hospital (PAH), Brisbane. Outcome of interest: Number of new VRE Isolates Methods: A BN is a probabilistic graphical model that represents a set of random variables and their conditional dependencies via a directed acyclic graph (DAG). BN enables multiple interacting agents to be studied simultaneously. The initial BN model was constructed based on the infectious disease physician‟s expert knowledge and current literature. Continuous variables were dichotomised by using third quartile values of year 2008 data. BN was used to examine the probabilistic relationships between VRE isolates and risk factors; and to establish which factors were associated with an increased probability of a high number of VRE isolates. Software: Netica (version 4.16). Results: Preliminary analysis revealed that VRE transmission and VRE prevalence were the most influential factors in predicting a high number of VRE isolates. Interestingly, several factors (hand hygiene and cleaning) known through literature to be associated with VRE prevalence, did not appear to be as influential as expected in this BN model. Conclusions: This preliminary work has shown that Bayesian Network Analysis is a useful tool in examining clinical infection prevention issues, where there is often a web of factors that influence outcomes. This BN model can be restructured easily enabling various combinations of agents to be studied.
Resumo:
An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
Identifying appropriate decision criteria and making optimal decisions in a structured way is a complex process. This paper presents an approach for doing this in the form of a hybrid Quality Function Deployment (QFD) and Cybernetic Analytic Network Process (CANP) model for project manager selection. This involves the use of QFD to translate the owner's project management expectations into selection criteria and the CANP to weight the expectations and selection criteria. The supermatrix approach then prioritises the candidates with respect to the overall decision-making goal. A case study is used to demonstrate the use of the model in selecting a renovation project manager. This involves the development of 18 selection criteria in response to the owner's three main expectations of time, cost and quality.
Resumo:
Utilities worldwide are focused on supplying peak electricity demand reliably and cost effectively, requiring a thorough understanding of all the factors influencing residential electricity use at peak times. An electricity demand reduction project based on comprehensive residential consumer engagement was established within an Australian community in 2008, and by 2011, peak demand had decreased to below pre-intervention levels. This paper applied field data discovered through qualitative in-depth interviews of 22 residential households at the community to a Bayesian Network complex system model to examine whether the system model could explain successful peak demand reduction in the case study location. The knowledge and understanding acquired through insights into the major influential factors and the potential impact of changes to these factors on peak demand would underpin demand reduction intervention strategies for a wider target group.
Resumo:
The motivation for this analysis is the recently developed Excellence in Research for Australia (ERA) program developed to assess the quality of research in Australia. The objective is to develop an appropriate empirical model that better represents the underlying production of higher education research. In general, past studies on university research performance have used standard DEA models with some quantifiable research outputs. However, these suffer from the twin maladies of an inappropriate production specification and a lack of consideration of the quality of output. By including the qualitative attributes of peer-reviewed journals, we develop a procedure that captures both quality and quantity, and apply it using a network DEA model. Our main finding is that standard DEA models tend to overstate the research efficiency of most Australian universities.
Resumo:
The higher education sector is under ongoing pressure to demonstrate quality and efficacy of educational provision, including graduate outcomes. Preparing students as far as possible for the world of professional work has become one of the central tasks of contemporary universities. This challenging task continues to receive significant attention by policy makers and scholars, in the broader contexts of widespread labour market uncertainty and massification of the higher education system (Tomlinson, 2012). In contrast to the previous era of the university, in which ongoing professional employment was virtually guaranteed to university-qualified individuals, contemporary graduates must now be proactive and flexible. They must adapt to a job market that may not accept them immediately, and has continually shifting requirements (Clarke, 2008). The saying goes that rather than seeking security in employment, graduates must now “seek security in employability”. However, as I will argue in this chapter, the current curricular and pedagogic approaches universities adopt, and indeed the core structural characteristics of university-based education, militate against the development of the capabilities that graduates require now and into the future.
Resumo:
In this research we modelled computer network devices to ensure their communication behaviours meet various network standards. By modelling devices as finite-state machines and examining their properties in a range of configurations, we discovered a flaw in a common network protocol and produced a technique to improve organisations' network security against data theft.
Resumo:
Previous studies have shown that buffering packets in DRAM is a performance bottleneck. In order to understand the impediments in accessing the DRAM, we developed a detailed Petri net model of IP forwarding application on IXP2400 that models the different levels of the memory hierarchy. The cell based interface used to receive and transmit packets in a network processor leads to some small size DRAM accesses. Such narrow accesses to the DRAM expose the bank access latency, reducing the bandwidth that can be realized. With real traces up to 30% of the accesses are smaller than the cell size, resulting in 7.7% reduction in DRAM bandwidth. To overcome this problem, we propose buffering these small chunks of data in the on chip scratchpad memory. This scheme also exploits greater degree of parallelism between different levels of the memory hierarchy. Using real traces from the internet, we show that the transmit rate can be improved by an average of 21% over the base scheme without the use of additional hardware. Further, the impact of different traffic patterns on the network processor resources is studied. Under real traffic conditions, we show that the data bus which connects the off-chip packet buffer to the micro-engines, is the obstacle in achieving higher throughput.
Resumo:
We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 inverse fb. We select events consistent with a signature of a single charged lepton, missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to $150 GeV/c^2, respectively.
Resumo:
We consider the problem of tracking an intruder in a plane region by using a wireless sensor network comprising motes equipped with passive infrared (PIR) sensors deployed over the region. An input-output model for the PIR sensor and a method to estimate the angular speed of the target from the sensor output are proposed. With the measurement model so obtained, we study the centralized and decentralized tracking performance using the extended Kalman filter.
Resumo:
Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error pe(0 <= p(e) < 0.5). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small p(e) should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low p(e) and high p(e) regimes. For the low p(e) regime, convolutional codes with good distance properties show good performance. For the high p(e) regime, convolutional codes that have a good slope ( the minimum normalized cycle weight) are seen to be good. We derive a lower bound on the slope of any rate b/c convolutional code with a certain degree.
Resumo:
Beavers are often found to be in conflict with human interests by creating nuisances like building dams on flowing water (leading to flooding), blocking irrigation canals, cutting down timbers, etc. At the same time they contribute to raising water tables, increased vegetation, etc. Consequently, maintaining an optimal beaver population is beneficial. Because of their diffusion externality (due to migratory nature), strategies based on lumped parameter models are often ineffective. Using a distributed parameter model for beaver population that accounts for their spatial and temporal behavior, an optimal control (trapping) strategy is presented in this paper that leads to a desired distribution of the animal density in a region in the long run. The optimal control solution presented, imbeds the solution for a large number of initial conditions (i.e., it has a feedback form), which is otherwise nontrivial to obtain. The solution obtained can be used in real-time by a nonexpert in control theory since it involves only using the neural networks trained offline. Proper orthogonal decomposition-based basis function design followed by their use in a Galerkin projection has been incorporated in the solution process as a model reduction technique. Optimal solutions are obtained through a "single network adaptive critic" (SNAC) neural-network architecture.
Resumo:
A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.