1000 resultados para NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt ferrite nanoparticles with average sizes of 14, 9 and 6 nm were synthesised by the chemical co-precipitation technique. Average particle sizes were varied by changing the chitosan surfactant to precursor molar ratio in the reaction mixture. Transmission electron microscopy images revealed a faceted and irregular morphology for the as-synthesised nanoparticles. Magnetic measurements revealed a ferromagnetic nature for the 14 and 9 nm particles and a superparamagnetic nature for the 6 nm particles. An increase in saturation magnetisation with increasing particle size was noted. Relaxivity measurements were carried out to determine T-2 value as a function of particle size using nuclear magnetic resonance measurements. The relaxivity coefficient increased with decrease in particle size and decrease in the saturation magnetisation value. The observed trend in the change of relaxivity value with particle size was attributed to the faceted nature of as-synthesised nanoparticles. Faceted morphology results in the creation of high gradient of magnetic field in the regions adjacent to the facet edges increasing the relaxivity value. The effect of edges in increasing the relaxivity value increases with decrease in the particle size because of an increase in the total number of edges per particle dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, multiwall carbon nanotubes (MWNTs) were chemically grafted onto dopamine anchored iron oxide (Fe3O4) nanoparticles via diazotization reaction to design electromagnetic (EM) shielding materials based on PC (polycarbonate)/SAN poly (styrene-co-acrylonitrile)] blends. A two step mixing protocol was adopted to selectively localize the nanoparticles in a given phase of the blends. In the first step, MWNT-g-Fe3O4 nanoparticles were solution blended with PC, followed by dilution with SAN during melt mixing in the subsequent step. This strategy, besides improving the quality of dispersion of MWNTs in the blends, facilitated enhanced EM interference shielding effectiveness (SE). Both, the MWNTs and the modified MWNTs, selectively localized in the PC phase and led to high electrical conductivity, in striking contrast to PC filled MWNT composites. The SE was measured on toroidal samples over a broad range of frequencies; X-band (8.2-12 GHz) and K-u-band (12-18 GHz). It was observed that the shielding mechanism mostly involved reflection in the blends with MWNTs, whereas absorption dominated in the case of blends with MWNT-g-Fe3O4. To realize the efficacy of this strategy, a few compositions were prepared by physical mixing MWNTs with Fe3O4 nanoparticles. Intriguingly, blends with MWNT-g-Fe3O4 nanoparticles manifested enhanced microwave absorption over physically mixed nanoparticles. An SE of -32.5 dB was observed (at 18 GHz) for MWNT (3 wt%)-g-Fe3O4 (3 vol%) in PC/SAN blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of bromo-terminated polystyrene (PS-Br) and poly(vinyl methylether) (PVME) exhibit lower critical solution temperatures. In this study, PS-Br was designed by atom transfer radical polymerization and was converted to thiol-capped polystyrene (PS-SH) by reacting with thiourea. The silver nanoparticles (nAg) were then decorated with covalently bound PS-SH macromolecules to improve the phase miscibility in the PS-Br-PVME blends. Thermally induced demixing in this model blend was followed in the presence of polystyrene immobilized silver nanoparticles (PS-g-nAg). The graft density of the PS macromolecules was estimated to be ca. 0.78 chains per nm(2). Although the matrix and the grafted molecular weights were similar, PS-g-nAg particles were expelled from the PS phase and were localized in the PVME phase of the blends. This was addressed with respect to intermediate graft density and favourable PS-PVME contacts from microscopic interactions point of view. Interestingly, blends with 0.5 wt% PS-g-nAg delayed the spinodal decomposition temperature in the blends by ca. 18 degrees C with respect to the control blends. The scale of cooperativity, as determined by differential scanning calorimetry, increased only marginally in the case of PS-g-nAg; however, it increased significantly in the presence of bare nAg particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of size selective monodispersed nanoparticles particularly intermetallic with well-defined compositions represents a challenge. This paper presents a way for the synthesis of intermetallic AuCu nanoparticles as a model system. We show that reduction of Au and Cu precursors is sensitive to the ratio of total molar concentrations of surfactant to metal precursors. A careful design of experiments to understand the kinetics of the reduction process reveals initial formation of seed nanoparticles of pure Au. Reduction of Cu occurs on the surface of the seed followed by diffusion to yield AuCu. This understanding allows us to develop a two step synthesis where the precise size controlled seed of Au nanoparticles produced in the first step is used in the second step reaction mixture as an Au precursor to allow deposition and interdiffusion of Cu that yields size selected AuCu intermetallics of sub 10 nm sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersion of nanoparticles in polymer nanocomposite films determines the application potential of these systems as novel materials with unique physical properties. Grafting polymers to, mostly inorganic, nanoparticles has been suggested as an effective strategy to enhance dispersion and hence the efficacy of materials. In this review, we discuss the various parameters which control dispersion of polymer grafted nanoparticles in polymer nanocomposite films. We discuss how surface x-ray scattering and microscopy can provide complementary and unique information in thin polymer nanocomposite films to unravel the subtle interplay of entropic and surface interactions, mediated by confinement, that leads to enhanced dispersion of the nanoparticles in these films. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of gemini surfactants based on cationic imidazolium ring as polar headgroup, abbreviated as lm-n-lm], 2Br(-) (n = 2, 5, 6 and 12), was synthesized. Their ability to stabilize silver nanoparticles in aqueous media was investigated. The resulting suspensions were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). They exhibit specific morphologies by adopting different supramolecular assemblies in aqueous media depending on the internal packing arrangements and on the number of spacer methylene units -(CH2)(n)-]. Individual colloids were extracted from the aqueous to chloroform layer and spread at the air/water interface to allow the formation of well-defined Langmuir films. By analysis of the surface pressure-area isotherms, the details about the packing behavior and orientation of the imidazolium gemini surfactant capped silver nanoparticles were obtained. Morphological features of the dynamic process of monolayer compression at the air-water interface were elucidated using Brewster angle microscopy (BAM). These monolayers were further transferred on mica sheets by the Langmuir-Blodgett technique at their associated collapse pressure and the morphology of these monolayers was investigated by atomic force microscopy (AFM). The number of spacer methylene units -(CH2)(n)-] of the gemini surfactants exerted critical influence in modulating the characteristics of the resulting Langmuir films. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a persistent need to assess the effects of TiO2 nanoparticles on the aquatic ecosystem owing to their increasing usage in consumer products and risk of environmental release. The current study is focused on TiO2 nanoparticle-induced acute toxicity at sub-ppm level (<= 1 ppm) on the three different freshwater sediment bacterial isolates and their consortium under two different irradiation (visible light and dark) conditions. The consortium of the bacterial isolates was found to be less affected by the exposure to the nanoparticles compared to the individual cells. The oxidative stress contributed considerably towards the cytotoxicity under both light and dark conditions. A statistically significant increase in membrane permeability was noted under the dark conditions as compared to the light conditions. The optical and fluorescence microscopic images showed aggregation and chain formation of the bacterial cells, when exposed to the nanoparticles. The electron microscopic (SEM, TEM) observations suggested considerable damage of cells and bio-uptake of nanoparticles. The exopolysaccrides (EPS) production and biofilm formation were noted to increase in the presence of the nanoparticles, and expression of the key genes involved in biofilm formation was studied by RT-PCR. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-step particle synthesis mechanism, also known as the Finke-Watzky (1997) mechanism, has emerged as a significant development in the field of nanoparticle synthesis. It explains a characteristic feature of the synthesis of transition metal nanoparticles, an induction period in precursor concentration followed by its rapid sigmoidal decrease. The classical LaMer theory (1950) of particle formation fails to capture this behavior. The two-step mechanism considers slow continuous nucleation and autocatalytic growth of particles directly from precursor as its two kinetic steps. In the present work, we test the two-step mechanism rigorously using population balance models. We find that it explains precursor consumption very well, but fails to explain particle synthesis. The effect of continued nucleation on particle synthesis is not suppressed sufficiently by the rapid autocatalytic growth of particles. The nucleation continues to increase breadth of size distributions to unexpectedly large values as compared to those observed experimentally. A number of variations of the original mechanism with additional reaction steps are investigated next. The simulations show that continued nucleation from the beginning of the synthesis leads to formation of highly polydisperse particles in all of the tested cases. A short nucleation window, realized with delayed onset of nucleation and its suppression soon after in one of the variations, appears as one way to explain all of the known experimental observations. The present investigations clearly establish the need to revisit the two-step particle synthesis mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(epsilon-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of gemini surfactants based on cationic imidazolium ring as polar headgroup, abbreviated as Im-n-Im], 2Br(-) (n = 2, 5,6 and 12), was synthesized. Their ability to stabilize silver nanoparticles in aqueous media was investigated. The resulting suspensions were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). They exhibit specific morphologies by adopting different supramolecular assemblies in aqueous media depending on the internal packing arrangements and on the number of spacer methylene units -(CH2)(n)-]. Individual colloids were extracted from the aqueous to chloroform layer and spread at the air/water interface to allow the formation of well-defined Langmuir films. By analysis of the surface pressure-area isotherms, the details about the packing behavior and orientation of the imidazolium gemini surfactant capped silver nanoparticles were obtained. Morphological features of the dynamic process of monolayer compression at the air-water interface were elucidated using Brewster angle microscopy (BAM). These monolayers were further transferred on mica sheets by the Langmuir-Blodgett technique at their associated collapse pressure and the morphology of these monolayers was investigated by atomic force microscopy (AFM). The number of spacer methylene units (CH2)(n)-] of the gemini surfactants exerted critical influence in modulating the characteristics of the resulting Langmuir films. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the investigations on the size dependent variation of magnetic properties of nickel ferrite nanoparticles. Nickel ferrite nanoparticles of different sizes (14 to 22 nm) were prepared by the sol-gel route at different annealing temperatures. They are characterized by TGA-DTA, XRD, SEM, TEM and Raman spectroscopy techniques for the confirmation of the temperature of phase formation, thermal stability, crystallinity, morphology and structural status of the nickel ferrite nanoparticles. The magnetization studies revealed that the saturation magnetization (M-s), retentivity (M-r) increase, while coercivity (H-c) and anisotropy (K-eff) decrease as the particle size increases. The observed value of M-s is found to be relatively higher for a particle size of 22 nm. In addition, we have estimated the magnetic domain size using magnetic data and correlated to the average particle size. The calculated magnetic domain size is closely matching with the particle size estimated from XRD. Impedance spectroscopy was employed to study the samples in an equivalent circuit to understand their transport phenomena. It shows that nickel ferrite nanoparticles exhibit a non-Debye behavior with increasing particle size due to the influence of increasing disorders, surface effects, grain size and grain boundaries, etc. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first detailed study of the kinetics of dispersion of nanoparticles in thin polymer films using temperature dependent in situ X-ray scattering measurements. We show a comparably enhanced dispersion at higher temperatures for systems which are otherwise phase segregated at room temperature. Detailed analysis of the time dependent X-ray reflectivity and diffuse scattering data allows us to explore the out-of-plane and in-plane mobility of the nanoparticles in the polymer films. While the out-of-plane motion is diffusive with a diffusion coefficient almost two orders of magnitude lower than that expected in bulk polymer, the in-plane one is found to be super-diffusive resulting in significantly larger in-plane displacement at similar time scales. We discuss the origin of the observed highly anisotropic motion of nanoparticles due to their slaved motion with respect to the anisotropic chain orientation and consequent diffusivity anisotropy of matrix chains. We also suggest strategies to utilize these observations to kinetically improve dispersion in otherwise thermodynamically segregated polymer nanocomposite films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cubic ZrO2: Fe3+ (0.5-4 mol%) nanoparticles (NPs) were synthesized via bin-inspired, inexpensive and simple route using Phyllanthus acidus as fuel. PXRD, SEM, TEM, FTIR, UV absorption and PL studies were performed to ascertain the formation of NPs. Rietveld analysis confirmed the formation of cubic structure. The influence of Fe3+ on the structure, morphology, UV absorption, PL emission and photocatalytic activity of NPs were investigated. The CIE chromaticity coordinates (0.36, 0.41) show that NPs could be a promising candidate for white LEDs. The influence of Fe3+ on ZrO2 matrix for photocatalytic degradation of AO7 was evaluated under UVA and Sunlight irradiation. The enhanced photocatalytic activity of spherical shaped ZrO2: Fe3+ (2 mol%) under UVA light was attributed to dopant concentration, crystallite size, narrow band gap, textural properties and capability for reducing the electron-hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers were followed the order SO42- > Cl- > C2H5OH > HCO3- > CO32-. The recycling catalytic ability of the ZrO2: Fe3+ (2 mol%) was also evaluated with a negligible decrease in the degradation efficiency even after the sixth successive run. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an electrochemical alloying reaction, the electroactive particles become mechanically unstable owing to large volume changes occurring as a result of high amounts of lithium intake. This is detrimental for long-term battery performance. Herein, a novel synthesis approach to minimize such mechanical instabilities in tin particles is presented. An optimal one-dimensional assembly of crystalline single-phase tin-antimony (SnSb) alloy nanoparticles inside porous carbon fibers (abbreviated SnSb-C) is synthesized for the first time by using the electrospinning technique (employing non-oxide precursors) in combination with a sintering protocol. The ability of antimony to alloy independently with lithium is beneficial as it buffers the unfavorable volume changes occurring during successive alloying/dealloying cycles in Sn. The SnSb-C assembly provides nontortuous (tortuosity coefficient, =1) fast conducting pathways for both electrons and ions. The presence of carbon in SnSb-C completely nullifies the conventional requirement of other carbon forms during cell electrode assembly. The SnSb-C exhibited remarkably high electrochemical lithium stability and high specific capacities over a wide range of currents (0.2-5Ag(-1)). In addition to lithium-ion batteries, it is envisaged that SnSb-C also has potential as a noncarbonaceous anode for other battery chemistries, such as sodium-ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we report the clean and facile synthesis of Pt and Pd nanoparticles decorated on reduced graphene oxide (rGO) by the simultaneous reduction of graphene oxide (GO) and the metal ions in Mg/acid medium. As-generated Pt and Pd nanoparticles serve as a heterogeneous catalyst for the further reduction of the rGO by the hydrogen spill-over process. The C/O ratio is much higher as compared to the rGO obtained by the reduction of GO by only Mg/acid. Overall, the process is rapid, facile and green that does not require any toxic chemical agent or any rigorous chemical reactions. We perform the catalytic reduction of 4-nitophenol (4-NP) to 4-aminophenol (4-AP) at room temperature by Pd@rGO and Pt@rGO. The reduction is complete within 35 s for Pd@rGO and 60 s for Pt@rGO when 50 mu g of hybrid catalyst is used for 0.5 ml of 1 mM of 4-NP. In case of ethanol oxidation, the current density for Pd@rGO is comparable to commercial Pt/C but is doubled for Pt@rGO. Overall, both structures show highly stable catalytic activity compared to commercial Pt/C. (C) 2014 Elsevier B.V. All rights reserved.