836 resultados para Multisensory processing
Resumo:
Dans le domaine de la perception, l'apprentissage est contraint par la présence d'une architecture fonctionnelle constituée d'aires corticales distribuées et très spécialisées. Dans le domaine des troubles visuels d'origine cérébrale, l'apprentissage d'un patient hémi-anopsique ou agnosique sera limité par ses capacités perceptives résiduelles, mais un déficit de reconnaissance visuelle de nature apparemment perceptive, peut également être associé à une altération des représentations en mémoire à long terme. Des réseaux neuronaux distincts pour la reconnaissance - cortex temporal - et pour la localisation des sons - cortex pariétal - ont été décrits chez l'homme. L'étude de patients cérébro-lésés confirme le rôle des indices spatiaux dans un traitement auditif explicite du « where » et dans la discrimination implicite du « what ». Cette organisation, similaire à ce qui a été décrit dans la modalité visuelle, faciliterait les apprentissages perceptifs. Plus généralement, l'apprentissage implicite fonde une grande partie de nos connaissances sur le monde en nous rendant sensible, à notre insu, aux règles et régularités de notre environnement. Il serait impliqué dans le développement cognitif, la formation des réactions émotionnelles ou encore l'apprentissage par le jeune enfant de sa langue maternelle. Le caractère inconscient de cet apprentissage est confirmé par l'étude des temps de réaction sériels de patients amnésiques dans l'acquisition d'une grammaire artificielle. Son évaluation pourrait être déterminante dans la prise en charge ré-adaptative. [In the field of perception, learning is formed by a distributed functional architecture of very specialized cortical areas. For example, capacities of learning in patients with visual deficits - hemianopia or visual agnosia - from cerebral lesions are limited by perceptual abilities. Moreover a visual deficit in link with abnormal perception may be associated with an alteration of representations in long term (semantic) memory. Furthermore, perception and memory traces rely on parallel processing. This has been recently demonstrated for human audition. Activation studies in normal subjects and psychophysical investigations in patients with focal hemispheric lesions have shown that auditory information relevant to sound recognition and that relevant to sound localisation are processed in parallel, anatomically distinct cortical networks, often referred to as the "What" and "Where" processing streams. Parallel processing may appear counterintuitive from the point of view of a unified perception of the auditory world, but there are advantages, such as rapidity of processing within a single stream, its adaptability in perceptual learning or facility of multisensory interactions. More generally, implicit learning mechanisms are responsible for the non-conscious acquisition of a great part of our knowledge about the world, using our sensitivity to the rules and regularities structuring our environment. Implicit learning is involved in cognitive development, in the generation of emotional processing and in the acquisition of natural language. Preserved implicit learning abilities have been shown in amnesic patients with paradigms like serial reaction time and artificial grammar learning tasks, confirming that implicit learning mechanisms are not sustained by the cognitive processes and the brain structures that are damaged in amnesia. In a clinical perspective, the assessment of implicit learning abilities in amnesic patients could be critical for building adapted neuropsychological rehabilitation programs.]
Resumo:
Forensic science is generally defined as the application of science to address questions related to the law. Too often, this view restricts the contribution of science to one single process which eventually aims at bringing individuals to court while minimising risk of miscarriage of justice. In order to go beyond this paradigm, we propose to refocus the attention towards traces themselves, as remnants of a criminal activity, and their information content. We postulate that traces contribute effectively to a wide variety of other informational processes that support decision making inmany situations. In particular, they inform actors of new policing strategies who place the treatment of information and intelligence at the centre of their systems. This contribution of forensic science to these security oriented models is still not well identified and captured. In order to create the best condition for the development of forensic intelligence, we suggest a framework that connects forensic science to intelligence-led policing (part I). Crime scene attendance and processing can be envisaged within this view. This approach gives indications abouthowto structure knowledge used by crime scene examiners in their effective practice (part II).
Resumo:
Deficits in the processing of sensory reafferences have been suggested as accounting for age-related decline in motor coordination. Whether sensory reafferences are accurately processed can be assessed based on the bimanual advantage in tapping: because of tapping with an additional hand increases kinesthetic reafferences, bimanual tapping is characterized by a reduced inter-tap interval variability than unimanual tapping. A suppression of the bimanual advantage would thus indicate a deficit in sensory reafference. We tested whether elderly indeed show a reduced bimanual advantage by measuring unimanual (UM) and bimanual (BM) self-paced tapping performance in groups of young (n = 29) and old (n = 27) healthy adults. Electroencephalogram was recorded to assess the underlying patterns of oscillatory activity, a neurophysiological mechanism advanced to support the integration of sensory reafferences. Behaviorally, there was a significant interaction between the factors tapping condition and age group at the level of the inter-tap interval variability, driven by a lower variability in BM than UM tapping in the young, but not in the elderly group. This result indicates that in self-paced tapping, the bimanual advantage is absent in elderly. Electrophysiological results revealed an interaction between tapping condition and age group on low beta band (14âeuro"20 Hz) activity. Beta activity varied depending on the tapping condition in the elderly but not in the young group. Source estimations localized this effect within left superior parietal and left occipital areas. We interpret our results in terms of engagement of different mechanisms in the elderly depending on the tapping mode: a âeuro~kinestheticâeuro? mechanism for UM and a âeuro~visual imageryâeuro? mechanism for BM tapping movement.
Resumo:
Multisensory interactions have been documented within low-level, even primary, cortices and at early post-stimulus latencies. These effects are in turn linked to behavioral and perceptual modulations. In humans, visual cortex excitability, as measured by transcranial magnetic stimulation (TMS) induced phosphenes, can be reliably enhanced by the co-presentation of sounds. This enhancement occurs at pre-perceptual stages and is selective for different types of complex sounds. However, the source(s) of auditory inputs effectuating these excitability changes in primary visual cortex remain disputed. The present study sought to determine if direct connections between low-level auditory cortices and primary visual cortex are mediating these kinds of effects by varying the pitch and bandwidth of the sounds co-presented with single-pulse TMS over the occipital pole. Our results from 10 healthy young adults indicate that both the central frequency and bandwidth of a sound independently affect the excitability of visual cortex during processing stages as early as 30 msec post-sound onset. Such findings are consistent with direct connections mediating early-latency, low-level multisensory interactions within visual cortices.
Resumo:
Previous research has provided inconsistent results regarding the spatial modulation of auditory-somatosensory interactions. The present study reports three experiments designed to investigate the nature of these interactions in the space close to the head. Human participants made speeded detection responses to unimodal auditory, somatosensory, or simultaneous auditory-somatosensory stimuli. In Experiment 1, electrocutaneous stimuli were presented to either earlobe, while auditory stimuli were presented from the same versus opposite sides, and from one of two distances (20 vs. 70cm) from the participant's head. The results demonstrated a spatial modulation of auditory-somatosensory interactions when auditory stimuli were presented from close to the head. In Experiment 2, electrocutaneous stimuli were delivered to the hands, which were placed either close to or far from the head, while the auditory stimuli were again presented at one of two distances. The results revealed that the spatial modulation observed in Experiment 1 was specific to the particular body part stimulated (head) rather than to the region of space (i.e. around the head) where the stimuli were presented. The results of Experiment 3 demonstrate that sounds that contain high-frequency components are particularly effective in eliciting this auditory-somatosensory spatial effect. Taken together, these findings help to resolve inconsistencies in the previous literature and suggest that auditory-somatosensory multisensory integration is modulated by the stimulated body surface and acoustic spectra of the stimuli presented.
Resumo:
Remote sensing image processing is nowadays a mature research area. The techniques developed in the field allow many real-life applications with great societal value. For instance, urban monitoring, fire detection or flood prediction can have a great impact on economical and environmental issues. To attain such objectives, the remote sensing community has turned into a multidisciplinary field of science that embraces physics, signal theory, computer science, electronics, and communications. From a machine learning and signal/image processing point of view, all the applications are tackled under specific formalisms, such as classification and clustering, regression and function approximation, image coding, restoration and enhancement, source unmixing, data fusion or feature selection and extraction. This paper serves as a survey of methods and applications, and reviews the last methodological advances in remote sensing image processing.
Resumo:
In this paper, we describe several techniques for detecting tonic pitch value in Indian classical music. In Indian music, the raga is the basic melodic framework and it is built on the tonic. Tonic detection is therefore fundamental for any melodic analysis in Indian classical music. This workexplores detection of tonic by processing the pitch histograms of Indian classic music. Processing of pitch histograms using group delay functions and its ability to amplify certain traits of Indian music in the pitch histogram, is discussed. Three different strategies to detect tonic, namely, the concert method, the template matching and segmented histogram method are proposed. The concert method exploits the fact that the tonic is constant over a piece/concert.templatematchingmethod and segmented histogrammethodsuse the properties: (i) the tonic is always present in the background, (ii) some notes are less inflected and dominant, to detect the tonic of individual pieces. All the three methods yield good results for Carnatic music (90−100% accuracy), while for Hindustanimusic, the templatemethod works best, provided the v¯adi samv¯adi notes for a given piece are known (85%).
Resumo:
The efficiency of combining high-pressure processing (HPP) and active packaging technologies to control Listeria monocytogenes growth during the shelf life of artificially inoculated cooked ham was assessed. Three lots of cooked ham were prepared: control, packaging with alginate films, and packaging with antimicrobial alginate films containing enterocins. After packaging, half of the samples were pressurized. Sliced cooked ham stored at 6 °C experienced a quick growth of L. monocytogenes. Both antimicrobial packaging and pressurization delayed the growth of the pathogen. However, at 6 °C the combination of antimicrobial packaging and HPP was necessary to achieve a reduction of inoculated levels without recovery during 60 days of storage. Further storage at 6 °C of pressurized antimicrobial packed cooked ham resulted in L. monocytogenes levels below the detection limit (day 90). On the other hand, storage at 1 °C controlled the growth of the pathogen until day 39 in non-pressurized ham, while antimicrobial packaging and storage at 1 °C exerted a bacteriostatic effect for 60 days. All HPP lots stored at 1 °C led to counts <100 CFU/g at day 60. Similar results were observed when combining both technologies. After a cold chain break no growth of L. monocytogenes was observed in pressurized ham packed with antimicrobial films, showing the efficiency of combining both technologies.
Resumo:
The effect of high pressure processing (400 MPa for 10 min) and natural antimicrobials 2 (enterocins and lactate-diacetate) on the behaviour of L. monocytogenes in sliced cooked ham 3 during refrigerated storage (1ºC and 6ºC) was assessed. The efficiency of the treatments after a 4 cold chain break was evaluated. Lactate-diacetate exerted a bacteriostatic effect against L. 5 monocytogenes during the whole storage period (3 months) at 1ºC and 6ºC, even after 6 temperature abuse. The combination of low storage temperature (1ºC), high pressure 7 processing (HPP) and addition of lactate-diacetate reduced the levels of L. monocytogenes 8 during storage by 2.7 log CFU/g. The most effective treatment was the combination of HPP, 9 enterocins and refrigeration at 1ºC, which reduced the population of the pathogen to final counts 10 of 4 MPN/g after 3 months of storage, even after the cold chain break.
Resumo:
Listeria monocytogenes was inoculated on the surface of sliced fermented sausages with no added sodium salt. The pathogen was progressively inactivated during the product shelf life (90 days). Antimicrobial packaging of fermented sausages with PVOH films containing nisin induced a more pronounced reduction of L. monocytogenes counts during refrigerated storage. HPP alone (600 MPa, 5 min, 12 °C) had no antimicrobial effect against L. monocytogenes at the studied conditions. Combination of HPP with antimicrobial packaging did not produce any extra protection against L. monocytogenes compared to antimicrobial packaging alone. The lack of effect of HPP on L. monocytogenes was attributed to a protective effect exerted by the low water activity of the product and its lactate content. These results reflect that antimicrobial packaging with the inclusion of nisin as a natural antimicrobial could be considered as an effective method to reduce the levels of L. monocytogenes in sliced fermented sausages with no added sodium salt