984 resultados para Multiscale stochastic modelling
Resumo:
This paper is concerned with evaluating the performance of loss networks. Accurate determination of loss network performance can assist in the design and dimen- sioning of telecommunications networks. However, exact determination can be difficult and generally cannot be done in reasonable time. For these reasons there is much interest in developing fast and accurate approximations. We develop a reduced load approximation that improves on the famous Erlang fixed point approximation (EFPA) in a variety of circumstances. We illustrate our results with reference to a range of networks for which the EFPA may be expected to perform badly.
Resumo:
Molecular dynamics simulations were employed to analyze the mechanical properties of polymer-based nanocomposites with varying nanofiber network parameters. The study was focused on nanofiber aspect ratio, concentration and initial orientation. The reinforcing phase affects the behavior of the polymeric nanocomposite. Simulations have shown that the fiber concentration has a significant effect on the properties, with higher loadings resulting in higher stress levels and higher stiffness, matching the general behavior from experimental knowledge in this field. The results also indicate that, within the studied range, the observed effect of the aspect ratio and initial orientation is smaller than that of the concentration, and that these two parameters are interrelated.
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.
Resumo:
The mycelium and young fruiting bodies of Agaricus blazei were submitted to supercritical CO2 extraction, in a modified commercial flow apparatus, at temperatures from 40 to 80 ºC, pressures up to 600 bar and CO2 flow-rates from 2.0 to 9.0 g.min-1. The best extraction conditions of secondary metabolites, whereby the degree of solubilization (g extract/100 g of fungi) is the highest, was obtained with pure CO2 at 400 bar, 70 ºC and a CO2 flow rate of 5.7g.min-1. The extract in that conditions were analysed by GC-Ms. In order to increase the extraction yield of secondary metabolites, which are mostly present in glycolipid fractions, a polar compound (ethanol) was used as co-solvent in the proportions of 5 and 10 % (mol/mol). The presence of ethanol increased the yield when compared with the extraction with pure CO2. Moreover, a simple model was applied to the supercritical CO2 extraction of secondary metabolites from Agaricus blazei.
Resumo:
The interplay of seasonality, the system's nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.
Resumo:
Earthquakes and tsunamis along Morocco's coasts have been reported since historical times. The threat posed by tsunamis must be included in coastal risk studies. This study focuses on the tsunami impact and vulnerability assessment of the Casablanca harbour and surrounding area using a combination of tsunami inundation numerical modelling, field survey data and geographic information system. The tsunami scenario used here is compatible with the 1755 Lisbon event that we considered to be the worst case tsunami scenario. Hydrodynamic modelling was performed with an adapted version of the Cornell Multigrid Coupled Tsunami Model from Cornell University. The simulation covers the eastern domain of the Azores-Gibraltar fracture zone corresponding to the largest tsunamigenic area in the North Atlantic. The proposed vulnerability model attempts to provide an insight into the tsunami vulnerability of building stock. Results in the form of a vulnerability map will be useful for decision makers and local authorities in preventing the community resiliency for tsunami hazards.
Resumo:
The modelling of the experimental data of the extraction of the volatile oil from six aromatic plants (coriander, fennel, savoury, winter savoury, cotton lavender and thyme) was performed using five mathematical models, based on differential mass balances. In all cases the extraction was internal diffusion controlled and the internal mass transfer coefficienty (k(s)) have been found to change with pressure, temperature and particle size. For fennel, savoury and cotton lavender, the external mass transfer and the equilibrium phase also influenced the second extraction period, since k(s) changed with the tested flow rates. In general, the axial dispersion coefficient could be neglected for the conditions studied, since Peclet numbers were high. On the other hand, the solute-matrix interaction had to be considered in order to ensure a satisfactory description of the experimental data.
Resumo:
The effects of the Miocene through Present compression in the Tagus Abyssal Plain are mapped using the most up to date available to scientific community multi-channel seismic reflection and refraction data. Correlation of the rift basin fault pattern with the deep crustal structure is presented along seismic line IAM-5. Four structural domains were recognized. In the oceanic realm mild deformation concentrates in Domain I adjacent to the Tore-Madeira Rise. Domain 2 is characterized by the absence of shortening structures, except near the ocean-continent transition (OCT), implying that Miocene deformation did not propagate into the Abyssal Plain, In Domain 3 we distinguish three sub-domains: Sub-domain 3A which coincides with the OCT, Sub-domain 3B which is a highly deformed adjacent continental segment, and Sub-domain 3C. The Miocene tectonic inversion is mainly accommodated in Domain 3 by oceanwards directed thrusting at the ocean-continent transition and continentwards on the continental slope. Domain 4 corresponds to the non-rifted continental margin where only minor extensional and shortening deformation structures are observed. Finite element numerical models address the response of the various domains to the Miocene compression, emphasizing the long-wavelength differential vertical movements and the role of possible rheologic contrasts. The concentration of the Miocene deformation in the transitional zone (TC), which is the addition of Sub-domain 3A and part of 3B, is a result of two main factors: (1) focusing of compression in an already stressed region due to plate curvature and sediment loading; and (2) theological weakening. We estimate that the frictional strength in the TC is reduced in 30% relative to the surrounding regions. A model of compressive deformation propagation by means of horizontal impingement of the middle continental crust rift wedge and horizontal shearing on serpentinized mantle in the oceanic realm is presented. This model is consistent with both the geological interpretation of seismic data and the results of numerical modelling.
Resumo:
The current study focuses on the analysis of pressure surge damping in single pipeline systems generated by a fast change of flow, conditions. A dimensionless form of pressurised transient flow equations was developed. presenting the main advantage of being independent of the system characteristics. In lack of flow velocity profiles. the unsteady friction in turbulent regimes is analysed based on two new empirical corrective-coefficients associated with local and convective acceleration terms. A new, surge damping approach is also presented taking into account the pressure peak time variation. The observed attenuation effect in the pressure wave for high deformable pipe materials can be described by a combination of the non-elastic behaviour of the pipe-wall with steady and unsteady friction effects. Several simulations and experimental tests have been carried out. in order to analyse the dynamic response of single pipelines with different characteristics, such as pipe materials. diameters. thickness. lengths and transient conditions.
Resumo:
A Blumlein line is a particular Pulse Forming Line, PFL, configuration that allows the generation of high-voltage sub-microsecond square pulses, with the same voltage amplitude as the dc charging voltage, into a matching load. By stacking n Blumlein lines one can multiply in theory by n the input dc voltage charging amplitude. In order to understand the operating behavior of this electromagnetic system and to further optimize its operation it is fundamental to theoretically model it, that is to calculate the voltage amplitudes at each circuit point and the time instant that happens. In order to do this, one needs to define the reflection and transmission coefficients where impedance discontinuity occurs. The experimental results of a fast solid-state switch, which discharges a three stage Blumlein stack, will be compared with theoretical ones.
Resumo:
Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending, the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of concentrated elements along their length. Based on Rayleigh's quotient, an iterative strategy is developed to find the approximated torsional stiffness coefficients, which allows the reconciliation between the theoretical model results and the experimental ones, obtained through impact tests. The mentioned algorithm treats the vibration of continuous beams under a determined set of boundary and continuity conditions, including different torsional stiffness coefficients and the effect of attached concentrated masses and rotational inertias, not only in the energetic terms of the Rayleigh's quotient but also on the mode shapes, considering the shape functions defined in branches. Several loading cases are examined and examples are given to illustrate the validity of the model and accuracy of the obtained natural frequencies.
Resumo:
The current regulatory framework for maintenance outage scheduling in distribution systems needs revision to face the challenges of future smart grids. In the smart grid context, generation units and the system operator perform new roles with different objectives, and an efficient coordination between them becomes necessary. In this paper, the distribution system operator (DSO) of a microgrid receives the proposals for shortterm (ST) planned outages from the generation and transmission side, and has to decide the final outage plans, which is mandatory for the members to follow. The framework is based on a coordination procedure between the DSO and other market players. This paper undertakes the challenge of optimization problem in a smart grid where the operator faces with uncertainty. The results show the effectiveness and applicability of the proposed regulatory framework in the modified IEEE 34- bus test system.
Resumo:
This paper presents the development of a solar photovoltaic (PV) model based on PSCAD/EMTDC - Power System Computer Aided Design – including a mathematical model study. An additional algorithm has been implemented in MATLAB software in order to calculate several parameters required by the PSCAD developed model. All the simulation study has been performed in PSCAD/MATLAB software simulation tool. A real data base concerning irradiance, cell temperature and PV power generation was used in order to support the evaluation of the implemented PV model.