894 resultados para Multilayer perceptron
Resumo:
An unaltered rearrangement of the original computation of a neural based predictor at the algorithmic level is introduced as a new organization. Its FPGA implementation generates circuits that are 1.7 faster than a direct implementation of the original algorithm. This faster clock rate allows to implement predictors with longer history lengths using the nearly the same hardware budget.
Resumo:
This invention relates to the manufacture of multi-layer interference filters for use with infra-red radiation, especially at wavelengths beyond 3.8 microns. A method of manufacturing a multi-layer interference filter comprising the steps of forming on a substrate successive layers of lead telluride and another material in alternation, under conditions in which sufficient oxygen is included in the lead telluride layers to reduce the apparent free charge carrier concentration therein, so that the resulting filter exhibits enhanced transparency to radiation of wavelengths greater than 3.8 microns and enhanced natural absorption to radiation of wavelength less than 3.8 microns.
Resumo:
The vacuum-deposited layer properties of materials of possible new use in infrared filters and coatings are described. These are comprehensively drawn from the II/VI, the heavy halide and the V/VI glass compounds, and are commercially available in all cases. Novel applications in coatings and filters are given for many of the materials.
Resumo:
Infrared optical-multilayer filters and materials were exposed to the space environment of low Earth orbit on LDEF. This paper summarizes the effects of that environment on the physical and optical properties of the filters and materials flown.
Resumo:
With continually increasing demands for improvements to atmospheric and planetary remote-sensing instrumentation, for both high optical system performance and extended operational lifetimes, an investigation to access the effects of prolonged exposure of the space environment to a series of infrared interference filters and optical materials was promoted on the NASA LDEF mission. The NASA Long Duration Exposure Facility (LDEF) was launchd by the Space Shuttle to transport various science and technology experiments both to and from space, providing investigators with the opportunity to study the effects of the space environment on materials and systems used in space-flight applications. Preliminary results to be discussed consist of transmission measurements obtained and processed from an infrared spectrophotometer both before (1983) and after (1990) exposure compared with unexposed control specimens, together with results of detailed microscopic and general visual examinations performed on the experiment. The principle lead telluride (PbTe) and Zinc Sulphide (ZnS) based multilayer filters selected for this preliminary investigation consist of : an 8-12µm low pass edge filter, a 10.6µm 2.5% half bandwidth (HBW) double half-wave narrow bandpass filter, and a 10% HBW triple half-wave wide bandpass filter at 15µm. Optical substrates of MgF2 and KRS-5 (T1BrI) will also be discussed.
Resumo:
The Improved Stratospheric and Mesospheric Sounder (ISAMS) is designed to measure the Earths middle atmosphere in the range of 4.6 to 16.6 micorns. This paper considers all the coated optical elements in two radiometric test channels. (Analysis of the spectral response will be presented as a seperate paper at this symposium, see Sheppard et al). Comparisons between the compued spectral performance and measurements from actual coatings will be discussed: These will include substrate absorption simulations. The results of environmental testing (durability and stability) are included, together with details of coating deposition and monitoring conditions.
Resumo:
Infrared multilayer interference filters have been used extensively in satellite radiometers for about 15 years. Filters manufactured by the University of Reading have been used in Nimbus 5, 6, and 7, TIROS N, and the Pioneer Venus orbiter. The ability of the filters to withstand the space environment in these applications is critical; if degradation takes place, the effects would range from worsening of signal-to-noise performance to complete system failure. An experiment on the LDEF will enable the filters, for the first time, to be subjected to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms.
Resumo:
Measurement is reported at 4 deg K (and blocked transmission below 10-5) of PbTe/ZnS thin-film filters deposited on Ge substrates. The reduced carrier-absorption which is obtained by cooling these PbTe films is found to accord with simple theory. Advantage for various high-performance multilayers by cooling is significant at the longer wavelengths, and has been verified.
Resumo:
The extraction of design data for the lowpass dielectric multilayer according to Tschebysheff performance is described. The extraction proceeds initially by analogy with electric-circuit design, and can then be given numerical refinement which is also described. Agreement with the Tschebysheff desideratum is satisfactory. The multilayers extracted by this procedure are of fractional thickness, symmetric with regard to their central layers.
Resumo:
The speed of convergence while training is an important consideration in the use of neural nets. The authors outline a new training algorithm which reduces both the number of iterations and training time required for convergence of multilayer perceptrons, compared to standard back-propagation and conjugate gradient descent algorithms.
Resumo:
The main limitation of linearization theory that prevents its application in practical problems is the need for an exact knowledge of the plant. This requirement is eliminated and it is shown that a multilayer network can synthesise the state feedback coefficients that linearize a nonlinear control affine plant. The stability of the linearizing closed loop can be guaranteed if the autonomous plant is asymptotically stable and the state feedback is bounded.
Resumo:
New nonlinear stability theorems are derived for disturbances to steady basic flows in the context of the multilayer quasi-geostrophic equations. These theorems are analogues of Arnol’d's second stability theorem, the latter applying to the two-dimensional Euler equations. Explicit upper bounds are obtained on both the disturbance energy and disturbance potential enstrophy in terms of the initial disturbance fields. An important feature of the present analysis is that the disturbances are allowed to have non-zero circulation. While Arnol’d's stability method relies on the energy–Casimir invariant being sign-definite, the new criteria can be applied to cases where it is sign-indefinite because of the disturbance circulations. A version of Andrews’ theorem is established for this problem, and uniform potential vorticity flow is shown to be nonlinearly stable. The special case of two-layer flow is treated in detail, with particular attention paid to the Phillips model of baroclinic instability. It is found that the short-wave portion of the marginal stability curve found in linear theory is precisely captured by the new nonlinear stability criteria.
Resumo:
Currently, infrared filters for astronomical telescopes and satellite radiometers are based on multilayer thin film stacks of alternating high and low refractive index materials. However, the choice of suitable layer materials is limited and this places limitations on the filter performance that can be achieved. The ability to design materials with arbitrary refractive index allows for filter performance to be greatly increased but also increases the complexity of design. Here a differential algorithm was used as a method for optimised design of filters with arbitrary refractive indices, and then materials are designed to these specifications as mono-materials with sub wavelength structures using Bruggeman’s effective material approximation (EMA).
Resumo:
A novel strategy for enhanced field-effect biosensing using capacitive electrolyte-insulator-semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si-SiO(2) EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 mu M and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10-12%). (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim