897 resultados para Multicellular aggregation
Resumo:
Pentameric capsomeres of human papillomavirus capsid protein L1 expressed in Escherichia coli self-assemble into virus-like particles (VLPs) in vitro. A multifactorial experimental design was used to explore a wide range of solution conditions to optimize the assembly process. The degree of assembly was measured using an enzyme-linked immunosorbent assay, and a high-throughput turbidity assay was developed to monitor competing aggregation. The presence of zinc ions in the assembly buffer greatly increased the incidence of aggregation and had to be excluded from the experiment for meaningful analysis. Assembly of VLPs was optimal at a pH of about 6.5, calcium and sodium ions had no measurable effect, and dithiothreitol and glutathione inhibited assembly. Tryptophan fluorescence spectroscopy demonstrated that an increase in urea concentration reduced the rate of VLP formation but had no effect on the final concentration of assembled VLPs. This study demonstrates the use of the hanging-drop vapor-diffusion crystallization method to screen for conditions that promote aggregation and the use of tryptophan fluorescence spectroscopy for real-time monitoring of the assembly process.
Resumo:
Large amounts of information can be overwhelming and costly to process, especially when transmitting data over a network. A typical modern Geographical Information System (GIS) brings all types of data together based on the geographic component of the data and provides simple point-and-click query capabilities as well as complex analysis tools. Querying a Geographical Information System, however, can be prohibitively expensive due to the large amounts of data which may need to be processed. Since the use of GIS technology has grown dramatically in the past few years, there is now a need more than ever, to provide users with the fastest and least expensive query capabilities, especially since an approximated 80 % of data stored in corporate databases has a geographical component. However, not every application requires the same, high quality data for its processing. In this paper we address the issues of reducing the cost and response time of GIS queries by preaggregating data by compromising the data accuracy and precision. We present computational issues in generation of multi-level resolutions of spatial data and show that the problem of finding the best approximation for the given region and a real value function on this region, under a predictable error, in general is "NP-complete.
Resumo:
The effect of sodium cholate (NaC; concentration 1-16 mM), a biological surfactant, on the aggregation behavior of 1% (w/v, 2.2 × 10(-3) M) poly(N-isopropylacrylamide) (PNIPAM) aqueous solutions was studied as a function of temperature. From turbidity, dynamic light scattering, viscosity, and fluorescence measurements, it was observed that (i) there is NaC-induced nanoscale aggregation of PNIPAM in its sol state and (ii) the lower critical solution temperature corresponding to sol-gel transition shifts to a lower temperature by about 2 °C.
Resumo:
This paper introduces a method for the analysis of regional linguistic variation. The method identifies individual and common patterns of spatial clustering in a set of linguistic variables measured over a set of locations based on a combination of three statistical techniques: spatial autocorrelation, factor analysis, and cluster analysis. To demonstrate how to apply this method, it is used to analyze regional variation in the values of 40 continuously measured, high-frequency lexical alternation variables in a 26-million-word corpus of letters to the editor representing 206 cities from across the United States.
Development of a multicellular co-culture model of normal and cystic fibrosis human airways in vitro
Resumo:
Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians and arises due to mutations in a chloride channel, called cystic fibrosis transmembrane conductance regulator. A hallmark of this disease is the chronic bacterial infection of the airways, which is usually, associated with pathogens such as Pseudomonas aeruginosa, S. aureus and recently becoming more prominent, B. cepacia. The excessive inflammatory response, which leads to irreversible lung damage, will in the long term lead to mortality of the patient at around the age of 40 years. Understanding the pathogenesis of CF currently relies on animal models, such as those employing genetically-modified mice, and on single cell culture models, which are grown either as polarised or non-polarised epithelium in vitro. Whilst these approaches partially enable the study of disease progression in CF, both types of models have inherent limitations. The overall aim of this thesis was to establish a multicellular co-culture model of normal and CF human airways in vitro, which helps to partially overcome these limitations and permits analysis of cell-to-cell communication in the airways. These models could then be used to examine the co-ordinated response of the airways to infection with relevant pathogens in order to validate this approach over animals/single cell models. Therefore epithelial cell lines of non-CF and CF background were employed in a co-culture model together with human pulmonary fibroblasts. Co-cultures were grown on collagen-coated permeable supports at air-liquid interface to promote epithelial cell differentiation. The models were characterised and essential features for investigating CF infections and inflammatory responses were investigated and analysed. A pseudostratified like epithelial cell layer was established at air liquid interface (ALI) of mono-and co-cultures and cell layer integrity was verified by tight junction (TJ) staining and transepithelial resistance measurements (TER). Mono- and co-cultures were also found to secrete the airway mucin MUC5AC. Influence of bacterial infections was found to be most challenging when intact S. aureus, B. cepacia and P. aeruginosa were used. CF mono- and co-cultures were found to mimic the hyperinflammatory state found in CF, which was confirmed by analysing IL-8 secretions of these models. These co-culture models will help to elucidate the role fibroblasts play in the inflammatory response to bacteria and will provide a useful testing platform to further investigate the dysregulated airway responses seen in CF.
Resumo:
We have studied the kinetics of the phase-separation process of mixtures of colloid and protein in solutions by real-time UV-vis spectroscopy. Complementary small-angle X-ray scattering (SAXS) was employed to determine the structures involved. The colloids used are gold nanoparticles functionalized with protein resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11)(OCH(2)CH(2))(6)OMe (EG6OMe). After mixing with protein solution above a critical concentration, c*, SAXS measurements show that a scattering maximum appears after a short induction time at q = 0.0322 angstrom(-1) stop, which increases its intensity with time but the peak position does not change with time, protein concentration and salt addition. The peak corresponds to the distance of the nearest neighbor in the aggregates. The upturn of scattering intensities in the low q-range developed with time indicating the formation of aggregates. No Bragg peaks corresponding to the formation of colloidal crystallites could be observed before the clusters dropped out from the solution. The growth kinetics of aggregates is followed in detail by real-time UV-vis spectroscopy, using the flocculation parameter defined as the integral of the absorption in the range of 600-800 nm wavelengths. At low salt addition (<0.5 M), a kinetic crossover from reaction-limited cluster aggregation (RLCA) to diffusion-limited cluster aggregation (DLCA) growth model is observed, and interpreted as being due to the effective repulsive interaction barrier between colloids within the depletion potential. Above 0.5 M NaCl, the surface charge of proteins is screened significantly, and the repulsive potential barrier disappeared, thus the growth kinetics can be described by a DLCA model only.
Resumo:
This paper presents a predictive aggregation rate model for spray fluidized bed melt granulation. The aggregation rate constant was derived from probability analysis of particle–droplet contact combined with time scale analysis of droplet solidification and granule–granule collision rates. The latter was obtained using the principles of kinetic theory of granular flow (KTGF). The predicted aggregation rate constants were validated by comparison with reported experimental data for a range of binder spray rate, binder droplet size and operating granulator temperature. The developed model is particularly useful for predicting particle size distributions and growth using population balance equations (PBEs).
Resumo:
Incorporating further information into the ordered weighted averaging (OWA) operator weights is investigated in this paper. We first prove that for a constant orness the minimax disparity model [13] has unique optimal solution while the modified minimax disparity model [16] has alternative optimal OWA weights. Multiple optimal solutions in modified minimax disparity model provide us opportunity to define a parametric aggregation OWA which gives flexibility to decision makers in the process of aggregation and selecting the best alternative. Finally, the usefulness of the proposed parametric aggregation method is illustrated with an application in metasearch engine. © 2011 Elsevier Inc. All rights reserved.
Resumo:
Aggregation and caking of particles are common severe problems in many operations and processing of granular materials, where granulated sugar is an important example. Prevention of aggregation and caking of granular materials requires a good understanding of moisture migration and caking mechanisms. In this paper, the modeling of solid bridge formation between particles is introduced, based on moisture migration of atmospheric moisture into containers packed with granular materials through vapor evaporation and condensation. A model for the caking process is then developed, based on the growth of liquid bridges (during condensation), and their hardening and subsequent creation of solid bridges (during evaporation). The predicted caking strengths agree well with some available experimental data on granulated sugar under storage conditions.