994 resultados para Motion classification
Resumo:
This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model
Resumo:
Breast cancer is a heterogeneous disease with varied morphological appearances, molecular features, behavior, and response to therapy. Current routine clinical management of breast cancer relies on the availability of robust clinical and pathological prognostic and predictive factors to support clinical and patient decision making in which potentially suitable treatment options are increasingly available. One of the best-established prognostic factors in breast cancer is histological grade, which represents the morphological assessment of tumor biological characteristics and has been shown to be able to generate important information related to the clinical behavior of breast cancers. Genome-wide microarray-based expression profiling studies have unraveled several characteristics of breast cancer biology and have provided further evidence that the biological features captured by histological grade are important in determining tumor behavior. Also, expression profiling studies have generated clinically useful data that have significantly improved our understanding of the biology of breast cancer, and these studies are undergoing evaluation as improved prognostic and predictive tools in clinical practice. Clinical acceptance of these molecular assays will require them to be more than expensive surrogates of established traditional factors such as histological grade. It is essential that they provide additional prognostic or predictive information above and beyond that offered by current parameters. Here, we present an analysis of the validity of histological grade as a prognostic factor and a consensus view on the significance of histological grade and its role in breast cancer classification and staging systems in this era of emerging clinical use of molecular classifiers.
Resumo:
PURPOSE: Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses "sub-images" and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. METHODS: During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. RESULTS: Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. CONCLUSIONS: CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted.
Resumo:
To classify mosquito species based on common features of their habitats, samples were obtained fortnightly between June 2001-October 2003 in the subtropical province of Chaco, Argentina. Data on the type of larval habitat, nature of the habitat (artificial or natural), size, depth, location related to sunlight, distance to the neighbouring houses, type of substrate, organic material, vegetation and algae type and their presence were collected. Data on the permanence, temperature, pH, turbidity, colour, odour and movement of the larval habitat's water were also collected. From the cluster analysis, three groups of species associated by their degree of habitat similarity were obtained and are listed below. Group 1 consisted of Aedes aegypti. Group 2 consisted of Culex imitator, Culex davisi, Wyeomyia muehlensi and Toxorhynchites haemorrhoidalis separatus. Within group 3, two subgroups are distinguished: A (Psorophora ferox, Psorophora cyanescens, Psorophora varinervis, Psorophora confinnis, Psorophora cingulata, Ochlerotatus hastatus-oligopistus, Ochlerotatus serratus, Ochlerotatus scapularis, Culex intrincatus, Culex quinquefasciatus, Culex pilosus, Ochlerotatus albifasciatus, Culex bidens) and B (Culex maxi, Culex eduardoi, Culex chidesteri, Uranotaenia lowii, Uranotaenia pulcherrima, Anopheles neomaculipalpus, Anopheles triannulatus, Anopheles albitarsis, Uranotaenia apicalis, Mansonia humeralis and Aedeomyia squamipennis). Principal component analysis indicates that the size of the larval habitats and the presence of aquatic vegetation are the main characteristics that explain the variation among different species. In contrast, water permanence is second in importance. Water temperature, pH and the type of larval habitat are less important in explaining the clustering of species.
Resumo:
This letter presents a comparison between threeFourier-based motion compensation (MoCo) algorithms forairborne synthetic aperture radar (SAR) systems. These algorithmscircumvent the limitations of conventional MoCo, namelythe assumption of a reference height and the beam-center approximation.All these approaches rely on the inherent time–frequencyrelation in SAR systems but exploit it differently, with the consequentdifferences in accuracy and computational burden. Aftera brief overview of the three approaches, the performance ofeach algorithm is analyzed with respect to azimuthal topographyaccommodation, angle accommodation, and maximum frequencyof track deviations with which the algorithm can cope. Also, ananalysis on the computational complexity is presented. Quantitativeresults are shown using real data acquired by the ExperimentalSAR system of the German Aerospace Center (DLR).
Resumo:
The use of chemical insecticides continues to play a major role in the control of disease vector populations, which is leading to the global dissemination of insecticide resistance. A greater capacity to detoxify insecticides, due to an increase in the expression or activity of three major enzyme families, also known as metabolic resistance, is one major resistance mechanisms. The esterase family of enzymes hydrolyse ester bonds, which are present in a wide range of insecticides; therefore, these enzymes may be involved in resistance to the main chemicals employed in control programs. Historically, insecticide resistance has driven research on insect esterases and schemes for their classification. Currently, several different nomenclatures are used to describe the esterases of distinct species and a universal standard classification does not exist. The esterase gene family appears to be rapidly evolving and each insect species has a unique complement of detoxification genes with only a few orthologues across species. The examples listed in this review cover different aspects of their biochemical nature. However, they do not appear to contribute to reliably distinguish among the different resistance mechanisms. Presently, the phylogenetic criterion appears to be the best one for esterase classification. Joint genomic, biochemical and microarray studies will help unravel the classification of this complex gene family.
Resumo:
Current research on sleep using experimental animals is limited by the expense and time-consuming nature of traditional EEG/EMG recordings. We present here an alternative, noninvasive approach utilizing piezoelectric films configured as highly sensitive motion detectors. These film strips attached to the floor of the rodent cage produce an electrical output in direct proportion to the distortion of the material. During sleep, movement associated with breathing is the predominant gross body movement and, thus, output from the piezoelectric transducer provided an accurate respiratory trace during sleep. During wake, respiratory movements are masked by other motor activities. An automatic pattern recognition system was developed to identify periods of sleep and wake using the piezoelectric generated signal. Due to the complex and highly variable waveforms that result from subtle postural adjustments in the animals, traditional signal analysis techniques were not sufficient for accurate classification of sleep versus wake. Therefore, a novel pattern recognition algorithm was developed that successfully distinguished sleep from wake in approximately 95% of all epochs. This algorithm may have general utility for a variety of signals in biomedical and engineering applications. This automated system for monitoring sleep is noninvasive, inexpensive, and may be useful for large-scale sleep studies including genetic approaches towards understanding sleep and sleep disorders, and the rapid screening of the efficacy of sleep or wake promoting drugs.
Resumo:
Inspired by experiments that use single-particle tracking to measure the regions of confinement of selected chromosomal regions within cell nuclei, we have developed an analytical approach that takes into account various possible positions and shapes of the confinement regions. We show, in particular, that confinement of a particle into a subregion that is entirely enclosed within a spherical volume can lead to a higher limit of the mean radial square displacement value than the one associated with a particle that can explore the entire spherical volume. Finally, we apply the theory to analyse the motion of extrachromosomal chromatin rings within nuclei of living yeast.
Resumo:
In 2009, the World Health Organization (WHO) issued a new guideline that stratifies dengue-affected patients into severe (SD) and non-severe dengue (NSD) (with or without warning signs). To evaluate the new recommendations, we completed a retrospective cross-sectional study of the dengue haemorrhagic fever (DHF) cases reported during an outbreak in 2011 in northeastern Brazil. We investigated 84 suspected DHF patients, including 45 (53.6%) males and 39 (46.4%) females. The ages of the patients ranged from five-83 years and the median age was 29. According to the DHF/dengue shock syndrome classification, 53 (63.1%) patients were classified as having dengue fever and 31 (36.9%) as having DHF. According to the 2009 WHO classification, 32 (38.1%) patients were grouped as having NSD [4 (4.8%) without warning signs and 28 (33.3%) with warning signs] and 52 (61.9%) as having SD. A better performance of the revised classification in the detection of severe clinical manifestations allows for an improved detection of patients with SD and may reduce deaths. The revised classification will not only facilitate effective screening and patient management, but will also enable the collection of standardised surveillance data for future epidemiological and clinical studies.
Resumo:
A statistical method for classification of sags their origin downstream or upstream from the recording point is proposed in this work. The goal is to obtain a statistical model using the sag waveforms useful to characterise one type of sags and to discriminate them from the other type. This model is built on the basis of multi-way principal component analysis an later used to project the available registers in a new space with lower dimension. Thus, a case base of diagnosed sags is built in the projection space. Finally classification is done by comparing new sags against the existing in the case base. Similarity is defined in the projection space using a combination of distances to recover the nearest neighbours to the new sag. Finally the method assigns the origin of the new sag according to the origin of their neighbours