954 resultados para Minimally invasisve
Resumo:
In Einstein-Maxwell theory, magnetic flux lines are "expelled" from a black hole as extremality is approached, in the sense that the component of the field strength normal to the horizon goes to zero. Thus, extremal black holes are found to exhibit the sort of ¿Meissner effect¿ which is characteristic of superconducting media. We review some of the evidence for this effect and present new evidence for it using recently found black hole solutions in string theory and Kaluza-Klein theory. We also present some new solutions, which arise naturally in string theory, which are non-superconducting extremal black holes. We present a nice geometrical interpretation of these effects derived by looking carefully at the higher dimensional configurations from which the lower dimensional black hole solutions are obtained. We show that other extremal solitonic objects in string theory (such as p-branes) can also display superconducting properties. In particular, we argue that the relativistic London equation will hold on the world volume of ¿light¿ superconducting p-branes (which are embedded in flat space), and that minimally coupled zero modes will propagate in the adS factor of the near-horizon geometries of "heavy," or gravitating, superconducting p-branes.
Resumo:
In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large-scale structure formation are the quantum fluctuations of the inflaton field. These are usually calculated using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for calculating the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field, such as Starobinsky¿s trace-anomaly driven inflation or when calculating corrections due to nonlinear quantum effects in the usual inflaton driven models.
Resumo:
Tuberculous spondylitis is rare in economically well-developed countries. MRI is the most sensitive radiologic method of diagnosis. CT-guided fine needle aspiration can be an appropriate method for obtaining samples for culture, with positive cultures in 25 to 89% of cases. However, it can take >6 weeks for specimens to grow, and it is essential to have adequate culture and sensitivity studies for the diagnosis and treatment of mycobacterial diseases. We propose a minimally invasive diagnostic approach that ensures that adequate surgical specimens are obtained prior to initiating treatment.
Resumo:
Fast-track multimodal rehabilitation after cesarean, the sum of all tricks Fast-track multimodal rehabilitation after caesarean is an interdisciplinary concept allowing an accelerated return to normal physiology. Fast-track rehabilitation combines minimising surgical trauma, regional anaesthesia and active management of pain control, minimally invasive postoperative care while promoting return to autonomy.
Resumo:
The function of sleep remains unknown. To gain insight into the function of sleep in natural conditions, I assessed variation in sleep architecture and its link with fitness-related phenotypic traits. I considered melanin-based coloration because its underlying genetic basis is very well known giving an opportunity to examine whether some genes pleiotropically regulate both coloration and sleep. The melanocortin system is known to generate covariation between melanin-based coloration and other phenotypes like behaviour, physiology and life history traits. I investigated whether this system of genes could participate in the co-expression of coloration and sleep. I carried out a study with nestling barn owls (Tyto alba) in order to tackle the potential link between variation in color traits and the ontogeny of sleep under natural conditions. For this I established a suitable method for recording the brain activity (electroencephalogram) of owls in nature. Birds are especially interesting, because they convergently evolved sleep states similar to those exhibited by mammals. As in mammals, I found that in owlets time spent in rapid eye movement (REM) sleep declines with age, a relationship thought to eflect developmental changes in the brain. Thus this developmental trajectory appears to reflect a fundamental feature of sleep. Additionally, I discovered an association between a gene involved in melanism expressed in the feather follicles (proprotein convertase subtilisin/kexin type 2, PCSK2) and the age-related changes in sleep in the brain. Nestlings with higher expression levels of PCSK2 showed a more precocial pattern of sleep development and a higher degree of melanin-based coloration compared to nestlings with lower PCSK2 expression. Also sleep architecture and the development of rhythmicity in brain and physical activity was related to plumage traits of the nestlings and their biological parents. This pattern during ontogeny might reflect differences in life l history strategies, antipredator behaviour and developmental pace. Therefore, differently colored individuals may differentially deal with trade-offs between the costs and benefits of sleep which in turn lead to differences in brain organization and ultimately fitness. These results should stimulate evolutionary biologists to consider sleep as a major life history trait. Résumé La fonction du sommeil reste inconnue. Afin d'acquérir une meilleur compréhension de la fonction du sommeil dans les conditions naturelles, j'ai analysé la variation dans l'architecture du sommeil et son lien avec d'autres traits phénotypiques liés au succès reproducteur (fitness). J'ai choisi et examiné la coloration mélanique, car ses bases génétiques sont bien connues et il est ainsi possible d'étudier si certains gènes, de façon pléiotropique régulent à la fois la coloration et le sommeil. J'ai exploré si ce système génétique était impliqué dans la co-expression de la coloration et du sommeil. J'ai effectué mon étude sur des poussins de chouette effraie (Tyto alba) en condition naturelle, pour rechercher ce lien potentiel entre la variation de la coloration et l'ontogenèse du sommeil. Dans ce but, j'ai établi une méthodologie permettant d'enregistrer l'activité cérébrale (électroencéphalogramme) des chouettes dans la nature. Les oiseaux sont particulièrement intéressants car ils ont développé, par évolution convergente, des phases de sommeil similaires à celles des mammifères. De manière semblable à ce qui a été montré chez les mammifères, j'ai découvert que le temps passé dans le sommeil paradoxal diminue avec l'âge des poussins. On pense que ceci est dû aux changements développementaux au niveau du cerveau. Cette trajectoire développementale semble refléter une caractéristique fondamentale du sommeil. J'ai également découvert une association entre l'un des gènes impliqué dans le mélanisme, exprimé dans les follicules plumeux (proprotein convertase subtilisin/kexin type 2, PCSK2), et les changements dans la structure du sommeil avec l'âge. Les poussins ayant un niveau d'expression génétique élevé de la PCSK2 présentent une structure du sommeil plus précoce et un taux de coloration dû à la mélanine plus élevé que des poussins avec un niveau d'expression moindre de la PCSK2. L'architecture du sommeil et le développement de la rythmicité dans le cerveau ainsi que l'activité physique sont également liés à la coloration des plumes des poussins et pourraient ainsi refléter des différences de stratégies d'histoire de vie, de comportements anti-prédateur et de vitesses développementales. Ainsi, des individus de coloration différente sembleraient traiter différemment les coûts et les bénéfices du sommeil, ce qui aurait des conséquences sur l'organisation cérébrale et pour finir, sur le succès reproducteur. Ces résultats devraient encourager les biologistes évolutionnistes à considérer le sommeil comme un important trait d'histoire de vie. Zusammenfassung Die Funktion von Schlaf ist noch unbekannt. Um mehr Einsicht in diese unter natürlichen Bedingungen zu bekommen, habe ich die Variation in der Schlafarchitektur und die Verknüpfung mit phänotypischen Merkmalen, die mit der Fitness zusammenhängen, studiert. Ich habe mir melanin-basierte Färbung angesehen, da die zugrunde liegende genetische Basis bekannt ist und somit die Möglichkeit gegeben ist, zu untersuchen, ob einige Gene beides regulieren, Färbung und Schlaf. Das melanocortin System generiert eine Kovariation zwischen melanin-basierter Färbung und anderen phänotypischer Merkmale wie Verhalten, Physiologie und Überlebensstrategien. Ich habe untersucht, ob dieses Gensystem an einer gleichzeitigen Steuerung von Färbung und Schlaf beteiligt ist. Dazu habe ich Schleiereulen (Tyto alba) studiert um einen möglichen Zusammenhang zwischen der Variation in der Pigmentierung und der Entwicklung des Schlafs unter natürlichen Bedingungen zu entdecken. Für diese Studie entwickelte ich eine Methode um die Gehirnaktivität (Elektroenzephalogramm) bei Eulen in der Natur aufzunehmen. Vögel sind besonders interessant, da sie die gleichen Schlafstadien aufweisen wie Säugetiere und diese unabhängig konvergent entwickelt haben. Genauso wie bei Säugetieren nahm die Dauer des sogenannten ,,rapid eye movement" (REM) - Schlafes mit zunehmendem Alter ab. Es wird angenommen, dass dieser Zusammenhang die Entwicklung des Gehirns widerspiegelt. Daher scheint dieses Entwicklungsmuster ein fundamentaler Aspekt von Schlaf zu sein. Zusätzlich entdeckte ich einen Zusammenhang zwischen der Aktivität eines Gens in den Federfollikeln (proprotein convertase subtilisin/kexin type 2, PCSK2), das für die Ausprägung schwarzer Punkte auf den Federn der Eulen verantwortlich ist, und den altersabhängigen Änderungen im Schlafmuster im Gehirn. Küken mit höherer Aktivität von PCSK2 zeigten eine frühreifere Schlafentwicklung und eine dunklere Färbung als Küken mit niedriger PCSK2 Aktivität. Die Architekture des Schlafes und die Entwicklung der Rhythmik im Gehirn und die der physischen Aktivität ist mit der Färbung des Gefieders von den Küken und ihren Eltern verknüpft. Dieses Muster während der Entwicklung kann Unterschiede in Überlebensstrategien, Feindabwehrverhalten und in der Entwicklungsgeschwindigkeit reflektieren. Unterschiedlich gefärbte Individuen könnten unterschiedliche Strategien haben um zwischen den Kosten und Nutzen von Schlaf zu entscheiden, was zu Unterschieden in der Gehirnstruktur führen kann und letztendlich zur Fitness. Diese Ergebnisse sollten Evolutionsbiologen stimulieren Schlaf als einen wichtigen Bestandteil des Lebens zu behandeln.
Resumo:
Velopharyngeal insufficiency (VPI) is a structural or functional trouble, which causes hypernasal speech. Velopharyngeal flaps, speech therapy and augmentation pharyngoplasty, using different implants, have all been used to address this trouble. We hereby present our results following rhinopharyngeal autologous fat injection in 18 patients with mild velopharyngeal insufficiency (12 soft palate clefts, 4 functional VPI, 2 myopathy). 28 injections were carried out between 2004 and 2007. The degree of hypernasal speech was evaluated pre- and postoperatively by a speech therapist and an ENT specialist and quantified by an acoustic nasometry (Kay Elemetrics). All patients were exhaustively treated with preoperative speech therapy (average, 8 years). The mean value of the nasalance score was 37% preoperatively and 23% postoperatively (p = 0.015). The hypernasality was reduced postoperatively in all patients (1-3 degrees of the Borel-Maisonny score). There were no major complications, two minor complications (one hematoma, one cervical pain). The autologous fat injection is a simple, safe, minimally invasive procedure. It proves to be efficient in cases of mild velopharyngeal insufficiency or after a suboptimal velopharyngoplasty.
Resumo:
Our aim was to assess the clinical outcome of patients who were subjected to long-axis sacroplasty for the treatment of sacral insufficiency fractures. Nineteen patients with unilateral (n = 3) or bilateral (n = 16) sacral fractures were involved. Under local anaesthesia, each patient was subjected to CT-guided sacroplasty using the long-axis approach through a single entry point. An average of 6 ml of polymethylmethacrylate (PMMA) was delivered along the path of each sacral fracture. For each individual patient, the Visual Analogue pain Scale (VAS) before sacroplasty and at 1, 4, 24 and 48 weeks after the procedure was obtained. Furthermore, the use of analgesics (narcotic/non-narcotic) along with the evolution of post-interventional patient mobility before and after sacroplasty was also recorded. The mean pre-procedure VAS was 8 +/- 1.9 (range, 2 to 10). This rapidly and significantly (P < 0.001) declined in the first week after the procedure (mean 4 +/- 1.4; range, 1 to 7) followed by a gradual and significant (P < 0.001) decrease along the rest of the follow-up period at 4 weeks (mean 3 +/- 1.1; range, 1 to 5), 24 weeks (mean 2.2 +/- 1.1; range, 1 to 5) and 48 weeks (mean 1.6 +/- 1.1; range, 1 to 5). Eleven (58%) patients were under narcotic analgesia before sacroplasty, whereas 8 (42%) patients were using non-narcotics. Corresponding values after the procedure were 2/19 (10%; narcotic, one of them was on reserve) and 10/19 (53%; non-narcotic). The remaining 7 (37%) patients did not address post-procedure analgesic use. The evolution of post-interventional mobility was favourable in the study group as they revealed a significant improvement in their mobility point scale (P < 0.001). Long-axis percutaneous sacroplasty is a suitable, minimally invasive treatment option for patients who present with sacral insufficiency fractures. More studies with larger patient numbers are needed to explore any unrecognised limitations of this therapeutic approach.
Resumo:
Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of illumination to create a solid polymer network. However, photopolymerization using a probe, e.g., needle guiding both the liquid and the curing illumination, has not been thoroughly investigated. We present a Monte Carlo model that takes into account the dynamic absorption and scattering parameters as well as solid-liquid boundaries of the photopolymer to yield the shape and volume of minimally invasively injected, photopolymerized hydrogels. In the first part of the article, our model is validated using a set of well-known poly(ethylene glycol) dimethacrylate hydrogels showing an excellent agreement between simulated and experimental volume-growth-rates. In the second part, in situ experimental results and simulations for photopolymerization in tissue cavities are presented. It was found that a cavity with a volume of 152 mm3 can be photopolymerized from the output of a 0.28-mm2 fiber by adding scattering lipid particles while only a volume of 38 mm3 (25%) was achieved without particles. The proposed model provides a simple and robust method to solve complex photopolymerization problems, where the dimension of the light source is much smaller than the volume of the photopolymerizable hydrogel.
Resumo:
BACKGROUND: In an experimental setting, the performance of the LifeBox, a new portable extracorporeal membrane oxygenator (ECMO) system suitable for patient transport, is presented. Standard rectilinear percutaneous cannulae are normally employed for this purpose, but have limited flow and pressure delivery due to their rigid structure. Therefore, we aimed to determine the potential for flow increase by using self-expanding venous cannulae. METHODS: Veno-arterial bypass was established in three pigs (40.6+/-5.1 kg). The venous line of the cardiopulmonary bypass was established by cannulation of the external jugular vein. The arterial side of the circulation was secured by cannulation of the common carotid artery. Two different venous cannulae (SmartCanula 18/36F 430mm and Biomedicus 19F) were examined for their functional integrity when used in conjunction with the centrifugal pump (500-3000 RPM) of the LifeBox system. RESULTS: At 1500, 2000, 2500, and 3000 RPM, the blood flow increased steadily for each cannula, but remained higher in the self-expanding cannula. That is, the 19F rectilinear cannula achieved a blood flow of 0.93+/-0.14, 1.47+/-0.37, 1.9+/-0.68, and 1.5+/-0.9 l/min, respectively, and the 18/36F self-expanding cannula achieved 1.1+/-0.1, 1.9+/-0.33, 2.8+/-0.39 and 3.66+/-0.52 l/min. However, when tested for venous line pressure, the standard venous cannula achieved -29+/-10.7mmHg while the self-expanding cannula achieved -13.6 +/-4.3mmHg at 1500 RMP. As the RPM increased from 2500 to 3000, the venous line pressure accounted for -141.9+/-20 and -98+/-7.3mmHg for the 19F rectilinear cannula and -30.6+/-6.4 and -45+/-11.6mmHg for the self-expanding cannula. CONCLUSION: The self-expanding cannula exhibited superior venous drainage ability when compared to the performance of the standard rectilinear cannula with the use of the LifeBox. The flow rate achieved was approximately 40% greater than the standard drainage device, with a maximal pump flow recorded at 4.3l/min.
Resumo:
Synthetic inhibitor of apoptosis (IAP) antagonists induce degradation of IAP proteins such as cellular IAP1 (cIAP1), activate nuclear factor kappaB (NF-kappaB) signaling, and sensitize cells to tumor necrosis factor alpha (TNFalpha). The physiological relevance of these discoveries to cIAP1 function remains undetermined. We show that upon ligand binding, the TNF superfamily receptor FN14 recruits a cIAP1-Tnf receptor-associated factor 2 (TRAF2) complex. Unlike IAP antagonists that cause rapid proteasomal degradation of cIAP1, signaling by FN14 promotes the lysosomal degradation of cIAP1-TRAF2 in a cIAP1-dependent manner. TNF-like weak inducer of apoptosis (TWEAK)/FN14 signaling nevertheless promotes the same noncanonical NF-kappaB signaling elicited by IAP antagonists and, in sensitive cells, the same autocrine TNFalpha-induced death occurs. TWEAK-induced loss of the cIAP1-TRAF2 complex sensitizes immortalized and minimally passaged tumor cells to TNFalpha-induced death, whereas primary cells remain resistant. Conversely, cIAP1-TRAF2 complex overexpression limits FN14 signaling and protects tumor cells from TWEAK-induced TNFalpha sensitization. Lysosomal degradation of cIAP1-TRAF2 by TWEAK/FN14 therefore critically alters the balance of life/death signals emanating from TNF-R1 in immortalized cells.
Resumo:
During the last two decades, endoscopic endonasal approach has completed the minimally invasive skull base surgery armamentarium. Endoscopic endonasal skull base surgery (EESBS) was initially developed in the field of pituitary adenomas, and gained an increasing place for the treatment of a wide variety of skull base pathologies, extending on the midline from crista galli process to the occipitocervical junction and laterally to the parasellar areas and petroclival apex. Until now, most studies are retrospective and lack sufficient methodological quality to confirm whether the endoscopic endonasal pituitary surgery has better results than the microsurgical trans-sphenoidal classical approach. The impressions of the expert teams show a trend toward better results for some pituitary adenomas with the endoscopic endonasal route, in terms of gross total resection rate and probably more comfortable postoperative course for the patient. Excepting intra- and suprasellar pituitary adenomas, EESBS seems useful for selected lesions extending onto the cavernous sinus and Meckel's cave but also for clival pathologies. Nevertheless, this infatuation toward endoscopic endonasal approaches has to be balanced with the critical issue of cerebrospinal fluid leaks, which constitutes actually the main limit of this approach. Through their experience and a review of the literature, the authors aim to present the state of the art of this approach as well as its limits.
Resumo:
Transapical transcatheter aortic valve implantation is an emerging technique for high-risk patients with symptomatic aortic valve stenosis, peripheral vascular disease, and severe concomitant comorbidities. However, a previous major surgical intervention involving the left hemithorax and the lung has always been considered a technical surgical challenge or even a potential contraindication for this minimally invasive procedure. With this report, we demonstrate, for the first time, that a previous left pneumonectomy followed by mediastinal radiotherapy does not affect the feasibility of transapical transcatheter aortic valve implantation, and we discuss the preoperative workup and the peculiar intraoperative cardiac imaging and surgical assessment.
Resumo:
Partitioning of proteins in cholesterol and sphingolipid enriched plasma membrane microdomains, called lipid rafts, is critical for many signal transduction and protein sorting events. Although raft partitioning of many signaling molecules remains to be determined, glycosylphosphatidyl-inositol (GPI)-anchored proteins possess high affinity for lipid rafts and are currently exploited as markers to investigate fundamental mechanisms in protein sorting and signal transduction events. In this study, we demonstrate that two recombinant GPI-anchored green fluorescent proteins (GFP-GPIs) that differ in their GPI signal sequence confer distinct localization in plasma membrane microdomains. GFP fused to the GPI signal of the decay accelerating factor GFP-GPI(DAF) partitioned exclusively in lipid rafts, whereas GFP fused to the GPI signal of TRAIL-R3, GFP-GPI(TRAIL-R3), associated only minimally with microdomains. In addition, we investigated the unique ability of purified GFP-GPIs to insert into membrane microdomains of primary lymphocytes. This cell surface painting allows rapid, stable, and functional association of the GPI-anchored proteins with the target cell plasma membrane. The distinct membrane localization of the two GFP-GPIs was observed irrespective of whether the GPI-anchored molecules were painted or transfected. Furthermore, we show that painted GFP-GPI(DAF) was totally dependent on the GPI anchor and that the membrane insertion was increased by the addition of raft-associated lipids such as cholesterol, sphingomyelin, and dipalmitoyl-phosphatidylethanolamine. Thus, this study provides evidence that different GPI signal sequences lead to distinct membrane microdomain localization and that painted GFP-GPI(DAF) serves as an excellent fluorescent marker for lipid rafts in live cells.
Resumo:
Paclitaxel (Tx)-loaded anti-HER2 immunonanoparticles (NPs-Tx-HER) were prepared by the covalent coupling of humanized monoclonal anti-HER2 antibodies (trastuzumab, Herceptin) to Tx-loaded poly (dl-lactic acid) nanoparticles (NPs-Tx) for the active targeting of tumor cells that overexpress HER2 receptors. The physico-chemical properties of NPs-Tx-HER were compared to unloaded immunonanoparticles (NPs-HER) to assess the influence of the drug on anti-HER2 coupling to the NP surface. The immunoreactivity of sulfo-MBS activated anti-HER2 mAbs and the in vitro efficacy of NPs-Tx-HER were tested on SKOV-3 ovarian cancer cells that overexpress HER2 antigens. Tx-loaded nanoparticles (NPs-Tx) obtained by a salting-out method had a size of 171+/-22 nm (P.I.=0.1) and an encapsulation efficiency of about of 78+/-10%, which corresponded to a drug loading of 7.8+/-0.8% (w/w). NPs-Tx were then thiolated and conjugated to activated anti-HER2 mAbs to obtain immunonanoparticles of 237+/-43 nm (P.I.=0.2). The influence of the activation step on the immunoreactivity of the mAbs was tested on SKOV-3 cells using 125I-radiolabeled mAbs, and the activity of the anti-HER2 mAbs was minimally affected after sulfo-MBS functionalization. Approximately 270 molecules of anti-HER2 mAbs were bound per nanoparticle. NPs-Tx-HER exhibited a zeta potential of 0.2+/-0.1 mV. The physico-chemical properties of the Tx-loaded immunonanoparticles were very similar to unloaded immunonanoparticles, suggesting that the encapsulation of the drug did not influence the coupling of the mAbs to the NPs. No drug loss was observed during the preparation process. DSC analysis showed that encapsulated Tx is in an amorphous or disordered-crystalline phase. These results suggest that Tx is entrapped in the polymeric matrix and not adsorbed to the surface of the NPs. In vitro studies on SKOV-3 ovarian cancer cells demonstrated the greater cytotoxic effect of NPs-Tx-HER compared to other Tx formulations. The results showed that at 1 ng Tx/ml, the viability of cells incubated with drug encapsulated in NP-Tx-HER was lower (77.32+/-5.48%) than the viability of cells incubated in NPs-Tx (97.4+/-12%), immunonanoparticles coated with Mabthera, as irrelevant mAb (NPs-Tx-RIT) (93.8+/-12%) or free drug (92.3+/-9.3%).