949 resultados para Mine inspection
Resumo:
Inspection for corrosion of gas storage spheres at the welding seam lines must be done periodically. Until now this inspection is being done manually and has a high cost associated to it and a high risk of inspection personel injuries. The Brazilian Petroleum Company, Petrobras, is seeking cost reduction and personel safety by the use of autonomous robot technology. This paper presents the development of a robot capable of autonomously follow a welding line and transporting corrosion measurement sensors. The robot uses a pair of sensors each composed of a laser source and a video camera that allows the estimation of the center of the welding line. The mechanical robot uses four magnetic wheels to adhere to the sphere's surface and was constructed in a way that always three wheels are in contact with the sphere's metallic surface which guarantees enough magnetic atraction to hold the robot in the sphere's surface all the time. Additionally, an independently actuated table for attaching the corrosion inspection sensors was included for small position corrections. Tests were conducted at the laboratory and in a real sphere showing the validity of the proposed approach and implementation.
Resumo:
Different lead sources were identified in a large uranium tailings deposit (5Mton) in the Central Region of Portugal using lead isotopic ratios obtained by ICP-QMS. These ratios helped to clarify the different sources of Pb within the tailings deposit and the impact of the tailings on the surroundings. Ten depth profiles were used for isotopic characterization of the tailings deposit; the lead background signature was evaluated in seven regional rocks (granites) and was defined as being 28 +/- 1 mg kg(-1) for Pb bulk concentration and with isotopic ratios of 1.264(2) for Pb-206/Pb-207 and 1.962(7) for Pb-208/Pb-206. In order to understand Pb isotope distribution within the tailings deposit, simple mixing/mass balance models were used to fit experimental data, involving: (1) the background component; (2) uranium ores (pitchblende) characterized by the ratios Pb-206/Pb-207 of 1.914(3) and Pb-208/Pb-206 of 1.235(2); and (3) an unknown Pb source (named 'Fonte 5') characterized by the ratios Pb-206/Pb-207 of 3.079(7) and Pb-208/Pb-206 of 0.715(1). This unknown source showed high radiogenic ratios found in the water of some tailings depth profiles located in a very specific position in the dump. In terms of isotopic characterization, 69% of the deposit material resulted from the background source, 25% from uranium minerals and only 6% from other uranium mines in the region. Finally, the environment impact revealed that the pollution was focused only in the beginning of the stream and not in the surroundings, nor in the groundwater system. The lead in the water was found only in colloidal form with a clear pitchblende signature. Those data revealed possible remobilization phenomena along the bedside and margins of the watercourse.
Resumo:
A bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactor was used to study the treatment of acid mine drainage through the biological reduction of sulfate. The reactor was fed with acid mine drainage collected at the Osamu Utsumi uranium mine (Caldas, MG, Brazil) and supplemented with ethanol as an external carbon source. Anaerobic granular sludge originating from a reactor treating poultry slaughterhouse wastewater was used as the inoculum. The reactor's performance was studied according to variations in the chemical oxygen demand (COD)/SO42- ratio, influent dilution and liquid-phase recirculation. The digestion of a dilution of the acid mine drainage resulted in a 46.3% removal of the sulfate and an increase in the effluent pH (COD/SO42- = 0.67). An increase in the COD/SO42- ratio to 1.0 resulted in an 85.6% sulfate reduction. The reduction of sulfate through complete oxidation of the ethanol was the predominant path in the reactor, although the removal of COD was not greater than 68% in any of the operational stages. The replenishment of the liquid phase with tap water positively affected the reactor, whereas the recirculation of treated effluent caused disequilibrium and decreased efficiency. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this study was developed a natural process using a biological system for the biosynthesis of nanoparticles (NPs) and possible removal of copper from wastewater by dead biomass of the yeast Rhodotorula mucilaginosa. Dead and live biomass of Rhodotorula mucilaginosa was used to analyze the equilibrium and kinetics of copper biosorption by the yeast in function of the initial metal concentration, contact time, pH, temperature, agitation and inoculum volume. Dead biomass exhibited the highest biosorption capacity of copper, 26.2 mg g(-1), which was achieved within 60 min of contact, at pH 5.0, temperature of 30°C, and agitation speed of 150 rpm. The equilibrium data were best described by the Langmuir isotherm and Kinetic analysis indicated a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the yeast were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The shape of the intracellularly synthesized NPs was mainly spherical, with an average size of 10.5 nm. The X-ray photoelectron spectroscopy (XPS) analysis of the copper NPs confirmed the formation of metallic copper. The dead biomass of Rhodotorula mucilaginosa may be considered an efficiently bioprocess, being fast and low-cost to production of copper nanoparticles and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process
Resumo:
A biological system for the biosynthesis of nanoparticles (NPs) and uptake of copper from wastewater, using dead biomass of Hypocrea lixii was analyzed and described for the first time. The equilibrium and kinetics investigation of the biosorption of copper onto dead, dried and live biomass of fungus were performed as a function of initial metal concentration, pH, temperature, agitation and inoculum volume. The high biosorption capacity was observed for dead biomass, completed within 60 min of contact, at pH 5.0, temperature of 40 °C and agitation speed of 150 rpm with a maximum copper biosorption of 19.0 mg g(-1). The equilibrium data were better described using the Langmuir isotherm and kinetic analysis indicated that copper biosorption follows a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the fungus were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). NPs were mainly spherical, with an average size of 24.5 nm, and were synthesized extracellularly. The X-ray diffraction (XRD) analysis confirms the presence of metallic copper particles. Infrared spectroscopy (FTIR) study revealed that the amide groups interact with the particles, which was accountable for the stability of NPs. This method further confirmed the presence of proteins as stabilizing and capping agents surrounding the copper NPs. These studies demonstrate that dead biomass of Hypocrea lixii provides an economic and technically feasible option for bioremediation of wastewater and is a potential candidate for industrial-scale production of copper NPs.
Resumo:
Mine tailings can be rich in sulphide minerals and may form acid mine drainage (AMD) through reaction with atmospheric oxygen and water. AMD contains elevated levels of metals and arsenic (As) that could be harmful to animals and plants. An oxygen-consuming layer of organic material and plants on top of water-covered tailings would probably reduce oxygen penetration into the tailings and thus reduce the formation of AMD. However, wetland plants have the ability to release oxygen through the roots and could thereby increase the solubility of metals and As. These elements are released into the drainage water, taken up and accumulated in the plant roots, or translocated to the shoots. The aim was to examine the effects of plant establishment on water-covered mine tailings by answering following questions: A) Is plant establishment on water-covered mine tailings possible? B) What are the metal and As uptake and translocation properties of these plants? C) How do plants affect metal and As release from mine tailings, and which are the mechanisms involved? Carex rostrata Stokes, Eriophorum angustifolium Honck., E. scheuchzeri Hoppe, Phragmites australis (Cav.) Steud., Salix phylicifolia L. and S. borealis Fr. were used as test plants. Influences of plants on the release of As, Cd, Cu, Pb, Zn and in some cases Fe in the drainage water, and plant element uptake were studied in greenhouse experiments and in the field. The results obtained demonstrate that plant establishment are possible on water-covered unweathered mine tailings, and a suitable amendment was found to be sewage sludge. On acidic, weathered tailings, a pH increasing substance such as ashes should be added to improve plant establishment. The metal and As concentrations of the plant tissue were found to be generally higher in roots than in shoots. The uptake was dependent on the metal and As concentrations of the tailings and the release of organic acids from plant roots may have influenced the uptake. The metal release from tailings into the drainage water caused by E. angustifolium was found to depend greatly on the age and chemical properties of the tailings. However, no effects of E. angustifolium on As release was found. Water from old sulphide-, metal- and As-rich tailings with low buffering capacity were positively affected by E. angustifolium by causing higher pH and lower metal concentrations. In tailings with relatively low sulphide, metal and As contents combined with a low buffering capacity, plants had the opposite impact, i.e. a reduction in pH and elevated metal levels of the drainage water. The total release of metal and As from the tailings, i.e. drainage water together with the contents in shoots and roots, was found to be similar for C. rostrata, E. angustifolium and P. australis, except for Fe and As, where the release was highest for P. australis. The differences in metal and As release from mine tailings were mainly found to be due to the release of O2 from the roots, which changes the redox potential. Release of organic acids from the roots slightly decreased the pH, although did not have any particular influence on the release of metal and As. In conclusion, as shown here, phytostabilisation may be a successful technique for remediation of mine tailings with high element and sulphide levels, and low buffering capacity.
Resumo:
A new type of pavement has been gaining popularity over the last few years in Europe. It comprises a surface course with a semi-flexible material that provides significant advantages in comparison to both concrete and conventional asphalt, having both rut resistance and a degree of flexibility. It also provides good protection against the ingress of water to the foundation, since it has an impermeable surface. The semi-flexible material, generally known as grouted macadam, comprises an open-graded asphalt skeleton with 25% to 35% voids into which a cementitious slurry is grouted. This hybrid mixture provides good rut resistance and a surface highly resistant to fuel and oil spillage. Such properties allow it to be used in industrial areas, airports and harbours, where those situations are frequently associated with heavy and slow traffic. Grouted Macadams constitute a poorly understood branch of pavement technology and have generally been relegated to a role in certain specialist pavements whose performance is predicted on purely empirical evidence. Therefore, the main objectives of this project were related to better understanding the properties of this type of material, in order to predict its performance more realistically and to design pavements incorporating grouted macadam more accurately. Based on a standard mix design, several variables were studied during this project in order to characterise the behaviour of Grouted Macadams in general, and the influence of those variables on the fundamental properties of the final mixture. In this research project, one approach was used to the design of pavements incorporating Grouted Macadams: a traditional design method, based on laboratory determined of the stiffness modulus and the compressive strength.
Resumo:
Mining and processing of metal ores are important causes of soil and groundwater contamination in many regions worldwide. Metal contaminations are a serious risk for the environment and human health. The assessment of metal contaminations in the soil is therefore an important task. A common approach to assess the environmental risk emanating from inorganic contaminations to soil and groundwater is the use of batch or column leaching tests. In this regard, the suitability of leaching tests is a controversial issue. In the first part of this work the applicability and comparability of common leaching tests in the scope of groundwater risk assessment of inorganic contamination is reviewed and critically discussed. Soil water sampling methods (the suction cup method and centrifugation) are addressed as an alternative to leaching tests. Reasons for limitations of the comparability of leaching test results are exposed and recommendations are given for the expedient application of leaching tests for groundwater risk assessment. Leaching tests are usually carried out in open contact with the atmosphere disregarding possible changes of redox conditions. This can affect the original metal speciation and distribution, particularly when anoxic samples are investigated. The influence of sample storage on leaching test results of sulfide bearing anoxic material from a former flotation dump is investigated in a long-term study. Since the oxidation of the sulfide-bearing samples leads to a significant overestimation of metal release, a feasible modification for the conduction of common leaching tests for anoxic material is proposed, where oxidation is prevented efficiently. A comparison of leaching test results to soil water analyzes have shown that the modified saturation soil extraction (SSE) is found to be the only of the tested leaching procedures, which can be recommended for the assessment of current soil water concentrations at anoxic sites if direct investigation of the soil water is impossible due to technical reasons. The vertical distribution and speciation of Zn and Pb in the flotation residues as well as metal concentrations in soil water and plants were investigated to evaluate the environmental risk arising from this site due to the release of metals. The variations in pH and inorganic C content show an acidification of the topsoil with pH values down to 5.5 in the soil and a soil water pH of 6 in 1 m depth. This is due to the oxidation of sulfides and depletion in carbonates. In the anoxic subsoil pH conditions are still neutral and soil water collected with suction cups is in equilibrium with carbonate minerals. Results from extended x-ray absorption fine-structure (EXAFS) spectroscopy confirm that Zn is mainly bound in sphalerite in the subsoil and weathering reactions lead to a redistribution of Zn in the topsoil. A loss of 35% Zn and S from the topsoil compared to the parent material with 10 g/kg Zn has been observed. 13% of total Zn in the topsoil can be regarded as mobile or easily mobilizable according to sequential chemical extractions (SCE). Zn concentrations of 10 mg/L were found in the soil water, where pH is acidic. Electron supply and the buffer capacity of the soil were identified as main factors controlling Zn mobility and release to the groundwater. Variable Pb concentrations up to 30 µg/L were observed in the soil water. In contrast to Zn, Pb is enriched in the mobile fraction of the oxidized topsoil by a factor of 2 compared to the subsoil with 2 g/kg Pb. 80% of the cation exchange capacity in the topsoil is occupied by Pb. Therefore, plant uptake and bioavailability are of major concern. If the site is not prevented from proceeding acidification in the future, a significant release of Zn, S, and Pb to the groundwater has to be expected. Results from this study show that the assessment of metal release especially from sulfide bearing anoxic material requires an extensive comprehension of leaching mechanisms on the one hand and on weathering processes, which influence the speciation and the mobility of metals, on the other hand. Processes, which may change redox and pH conditions in the future, have to be addressed to enable sound decisions for soil and groundwater protection and remediation.
Resumo:
Throughout the world, pressures on water resources are increasing, mainly as a result of human activity. Because of their accessibility, groundwater and surface water are the most used reservoirs. The evaluation of the water quality requires the identification of the interconnections among the water reservoirs, natural landscape features, human activities and aquatic health. This study focuses on the estimation of the water pollution linked to two different environmental issues: salt water intrusion and acid mine drainage related to the exploitation of natural resources. Effects of salt water intrusion occurring in the shallow aquifer north of Ravenna (Italy) was analysed through the study of ion- exchange occurring in the area and its variance throughout the year, applying a depth-specific sampling method. In the study area were identified ion exchange, calcite and dolomite precipitation, and gypsum dissolution and sulphate reduction as the main processes controlling the groundwater composition. High concentrations of arsenic detected only at specific depth indicate its connexion with the organic matter. Acid mine drainage effects related to the tin extraction in the Bolivian Altiplano was studied, on water and sediment matrix. Water contamination results strictly dependent on the seasonal variation, on pH and redox conditions. During the dry season the strong evaporation and scarce water flow lead to low pH values, high concentrations of heavy metals in surface waters and precipitation of secondary minerals along the river, which could be released in oxidizing conditions as demonstrated through the sequential extraction analysis. The increase of the water flow during the wet season lead to an increase of pH values and a decrease in heavy metal concentrations, due to dilution effect and, as e.g. for the iron, to precipitation.
Resumo:
La stima della frequenza di accadimento di eventi incidentali di tipo random da linee e apparecchiature è in generale effettuata sulla base delle informazioni presenti in banche dati specializzate. I dati presenti in tali banche contengono informazioni relative ad eventi incidentali avvenuti in varie tipologie di installazioni, che spaziano dagli impianti chimici a quelli petrolchimici. Alcune di queste banche dati risultano anche piuttosto datate, poiché fanno riferimento ad incidenti verificatisi ormai molto addietro negli anni. Ne segue che i valori relativi alle frequenze di perdita forniti dalle banche dati risultano molto conservativi. Per ovviare a tale limite e tenere in conto il progresso tecnico, la linea guida API Recommended Pratice 581, pubblicata nel 2000 e successivamente aggiornata nel 2008, ha introdotto un criterio per determinare frequenze di perdita specializzate alla realtà propria impiantistica, mediante l’ausilio di coefficienti correttivi che considerano il meccanismo di guasto del componente, il sistema di gestione della sicurezza e l’efficacia dell’attività ispettiva. Il presente lavoro di tesi ha lo scopo di mettere in evidenza l’evoluzione dell’approccio di valutazione delle frequenze di perdita da tubazione. Esso è articolato come descritto nel seguito. Il Capitolo 1 ha carattere introduttivo. Nel Capitolo 2 è affrontato lo studio delle frequenze di perdita reperibili nelle banche dati generaliste. Nel Capitolo 3 sono illustrati due approcci, uno qualitativo ed uno quantitativo, che permettono di determinare le linee che presentano priorità più alta per essere sottoposte all’attività ispettiva. Il Capitolo 4 è dedicato alla descrizione della guida API Recomended Practice 581. L’applicazione ad un caso di studio dei criteri di selezione delle linee illustrati nel Capitolo 3 e la definizione delle caratteristiche dell’attività ispettiva secondo la linea guida API Recomended Practice 581 sono illustrati nel Capitolo 5. Infine nel Capitolo 6 sono rese esplicite le considerazioni conclusive dello studio effettuato.
Resumo:
The aim of this study was to compare the in situ and in vitro performances of a laser fluorescence (LF) device (DIAGNOdent 2095) with visual inspection for the detection of occlusal caries in permanent teeth. Sixty-four sites were selected, and visual inspection and LF assessments were carried out, in vitro, three times by two independent examiners, with a 1-week interval between evaluations. Afterwards, the occlusal surfaces were mounted on the palatal portion of removable acrylic orthodontic appliances and placed in six volunteers. Assessments were repeated and validated by histological analysis of the tooth sections under a stereomicroscope. For both examiners, the highest intra-examiner values were observed for the visual inspection when in vitro and in situ evaluations were compared. The inter-examiner reproducibility varied from 0.61 to 0.64, except for the in vitro assessment using LF, which presented a lower value (0.43). The methods showed high specificity at the D(1) threshold (considering enamel and dentin caries as disease). In vitro evaluations showed the highest values of sensitivity for both methods when compared to the in situ evaluations at D(1) and D(2) (considering only dentinal caries as the disease) thresholds. For both methods, the results of sensitivity (at D(1) and D(2)) and accuracy (at D(1)) showed significant differences between in vitro and in situ conditions. However, the sensitivity (at D(1) and D(2)), specificity and accuracy (both at D(1)) of the methods were not significantly different when the same condition was considered. It can be concluded that visual inspection and LF showed better performance in vitro than in situ.
Abandoned Coal Mine Drainage and Its Remediation: Impacts on Stream Ecosystem Structure and Function
Resumo:
The effects of abandoned mine drainage (AMD) on streams and responses to remediation efforts were studied using three streams (AMD-impacted, remediated, reference) in both the anthracite and the bituminous coal mining regions of Pennsylvania (USA). Response variables included ecosystem function as well as water chemistry and macroinvertebrate community composition. The bituminous AMD stream was extremely acidic with high dissolved metals concentrations, a prolific mid-summer growth of the filamentous alga, Mougeotia, and .10-fold more chlorophyll than the reference stream. The anthracite AMD stream had a higher pH, substrata coated with iron hydroxide(s), and negligible chlorophyll. Macroinvertebrate communities in the AMD streams were different from the reference streams, the remediated streams, and each other. Relative to the reference stream, the AMD stream(s) had (1) greater gross primary productivity (GPP) in the bituminous region and undetectable GPP in the anthracite region, (2) greater ecosystem respiration in both regions, (3) greatly reduced ammonium uptake and nitrification in both regions, (4) lower nitrate uptake in the bituminous (but not the anthracite) region, (5) more rapid phosphorus removal from the water column in both regions, (6) activities of phosphorus-acquiring, nitrogenacquiring, and hydrolytic-carbon-acquiring enzymes that indicated extreme phosphorus limitation in both regions, and (7) slower oak and maple leaf decomposition in the bituminous region and slower oak decomposition in the anthracite region. Remediation brought chlorophyll concentrations and GPP nearer to values for respective reference streams, depressed ecosystem respiration, restored ammonium uptake, and partially restored nitrification in the bituminous (but not the anthracite) region, reduced nitrate uptake to an undetectable level, restored phosphorus uptake to near normal rates, and brought enzyme activities more in line with the reference stream in the bituminous (but not the anthracite) region. Denitrification was not detected in any stream. Water chemistry and macroinvertebrate community structure analyses capture the impact of AMD at the local reach scale, but functional measures revealed that AMD has ramifications that can cascade to downstream reaches and perhaps to receiving estuaries.
Resumo:
The fluorescent mineral hardystonite is confirmed in a specimen from the Desert View Mine, California. Hardystonite had been known only from Franklin, New Jersey for over 100 years.