950 resultados para Metabolism regulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth factor signaling promotes anabolic processes via activation of the PI3K-Akt kinase cascade. Deregulation of the growth factor-dependent PI3K-Akt pathway was implicated in tumorigenesis. Akt is an essential serine/threonine protein kinase that controls multiple physiological functions such as cell growth, proliferation, and survival to maintain cellular homeostasis. Recently, the mammalian Target of Rapamycin Complex 2 (mTORC2) was identified as the main Akt Ser-473 kinase, and Ser-473 phosphorylation is required for Akt hyperactivation. However, the detailed mechanism of mTORC2 regulation in response to growth factor stimulation or cellular stresses is not well understood. In the first project, we studied the regulation of the mTORC2-Akt signaling under ER stress. We identified the inactivation of mTORC2 by glycogen synthase kinase-3β (GSK-3β). Under ER stress, the essential mTORC2 component, rictor, is phosphorylated by GSK-3β at Ser-1235. This phosphorylation event results in the inhibition of mTORC2 kinase activity by interrupting Akt binding to mTORC2. Blocking rictor Ser-1235 phosphorylation can attenuate the negative impacts of GSK-3β on mTORC2/Akt signaling and tumor growth. Thus, our work demonstrated that GSK-3β-mediated rictor Ser-1235 phosphorylation in response to ER stress interferes with Akt signaling by inhibiting mTORC2 kinase activity. In the second project, I investigated the regulation of the mTORC2 integrity. We found that basal mTOR kinase activity depends on ATP level, which is tightly regulated by cell metabolism. The ATP-sensitive mTOR kinase is required for SIN1 protein phosphorylation and stabilization. SIN1 is an indispensable subunit of mTORC2 and is required for the complex assembly and mTORC2 kinase activity. Our findings reveal that mTOR-mediated phosphorylation of SIN1 is critical for maintaining complex integrity by preventing SIN1 from lysosomal degradation. In sum, our findings verify two distinct mTORC2 regulatory mechanisms via its components rictor and SIN1. First, GSK-3β-mediated rictor Ser-1235 phosphorylation results in mTORC2 inactivation by interfering its substrate binding ability. Second, mTOR-mediated Ser-260 phosphorylation of SIN1 preserves its complex integrity. Thus, these two projects provide novel insights into the regulation of mTORC2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates c-Myc-induced metabolic target genes expression. Therefore, 14-3-3σ remarkably blocks glycolysis, decreases glutaminolysis and diminishes mitochondrial mass of cancer cells both in vitro and in vivo, thereby severely suppressing cancer bioenergetics and metabolism. As a result, a high level of 14-3-3σ in tumors is strongly associated with increased breast cancer patients’ overall and metastasis-free survival as well as better clinical outcomes. Thus, this study reveals a new role for 14-3-3s as a significant regulator of cancer bioenergetics and a promising target for the development of anti-cancer metabolism therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A colony of rabbits has been developed at the University of Texas Medical School at Houston that is resistant to dietary-induced hypercholesterolemia. The liver of resistant rabbits had higher levels of ($\sp{125}$I) $\beta$-VLDL binding and 3-hydroxy-3-methylglutaryl (HMGCoA) reductase activity, but lower acyl coenzyme A:cholesterol acyltransferase (ACAT) activity than normal rabbits. Direct quantitation of intracellular cholesterol content of the liver revealed that the resistant rabbits had $<$10% of the intracellular free cholesterol present in normal rabbits. Fibroblasts isolated from normal and resistant rabbits exhibited differences in ($\sp{125}$I) LDL binding, HMGCoA reductase activity and ACAT activity that were similar to those found in the liver. No structural differences were found in the LDL receptor of normal and resistant fibroblasts that would account for the increased binding capacity of the resistant cells. The regulation of LDL receptor levels by exogenous oxygenated sterols was similar in normal and resistant fibroblasts. The regulation of LDL receptor binding capacity by LDL was attenuated in the resistant compared to normal fibroblasts, suggesting that the resistant fibroblasts have an alternate pathway for processing lipoprotein-derived cholesterol. Sterol-balance studies revealed that the cholesterol-fed resistant rabbits increased lithocholic acid excretion compared to the basal state, and had higher levels of deoxycholic acid excretion than cholesterol-fed normal rabbits. In addition, the specific activity and mRNA levels of cholesterol 7$\alpha$-hydroxylase (C7$\alpha$H) were higher in resistant rabbits than normal rabbits, suggesting that the increased bile acid excretion was due to an increase in bile acid synthesis. Increased clearance of cholesterol relieves the negative feedback inhibition cholesterol exerts on expression of the LDL receptor. The number of cell surface LDL receptors is then increased in resistant rabbits and allows rapid clearance of lipoproteins from the plasma compartment, thereby reducing plasma cholesterol levels. The low intracellular cholesterol level also relieves the negative feedback inhibition cholesterol exerts on HMGCoA reductase. Increased synthesis of cholesterol from acetate provides cells with cholesterol for bile acid synthesis and/or homeostasis. The activity of ACAT is then decreased due to the flux of cholesterol through the bile acid synthetic pathways. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human glutathione S-transferase P1 (GSTP1) protein is an endogenous inhibitor of c-jun N-terminal kinases (JNKs) and an important phase II detoxification enzyme. ^ Recent identification of a cAMP response element (CRE) in the 5 ′-region of the human GSTP1 gene and several putative phosphorylation sites for the Ser/Thr protein kinases, including, cAMP-dependent protein kinases (PKAs), protein kinases C (PKCs), and JNKs in the GSTP1 protein raised the possibility that signaling pathways may play an important role in the transcriptional and post-translational regulation of GSTP1 gene. This study examined (a) whether the signaling pathway mediated by CAMP, via the GSTP1 CRE, is involved in the transcriptional regulation of the GSTP1 gene, (b) whether signaling pathways mediated by the Ser/Thr protein kinases (PKAs, PKCs, and JNKs) induce post-translational modification, viz. phosphorylation of the GSTP1 protein, and (c) whether such phosphorylation of the GSTP1 protein alters its functions in metabolism and in JNK signaling. ^ The first major finding in this study is the establishment of the human GSTP1 gene as a novel CAMP responsive gene in which transcription is activated via an interaction between PKA activated CRE binding protein-1 (CREB-1) and the CRE in the 5′-regulatory region. ^ The second major finding in this study is the observation that the GSTP1 protein undergoes phosphorylation and functionally activated by second messenger-activated protein kinases, PKA and PKC, in tumor cells with activated signaling pathways. Following phosphorylation by PKA or PKC, the catalytic activity of the GSTP1 protein was significantly enhanced, as indicated by a decrease in its Km (2- to 3.6-fold) and an increase in Kcat/ Km (1.6- to 2.5-fold) for glutathione. Given the frequent over-expression of GSTP1 and the aberrant PKA/PKC signaling cascade observed in tumors, these findings suggest that phosphorylation of GSTP1 may contribute to the malignant progression and drug-resistant phenotype of these tumors. ^ The third major finding in this study is that the GSTP1 protein, an inhibitor of JNKs, undergoes significant phosphorylation in tumor cells with activated JNK signaling pathway and in those under oxidative stress. Following phosphorylation by JNK, the ability of GSTP1 to inhibit JNK downstream function, i.e. c-jun phosphorylation, was significantly enhanced, suggesting a feedback mechanism of regulation of JNK-mediated cellular signaling. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their low metabolism and apparent poor ion regulation ability, sea urchins could be particularly sensitive to ocean acidification resulting from increased dissolution of atmospheric carbon dioxide. Therefore, we evaluated the acid-base regulation ability of the coral reef sea urchin Echinometra mathaei and the impact of decreased pH on its growth and respiration activity. The study was conducted in two identical artificial reef mesocosms during seven weeks. Experimental tanks were maintained respectively at mean pHT 7.7 and 8.05 (with field-like night and day variations). The major physico-chemical parameters were identical, only pCO2 and pHT differed. Results indicate that E. mathaei can regulate the pH of its coelomic fluid in the considered range of pH, allowing a sustainable growth and ensuring an unaffected respiratory metabolism, at least at short term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent discovery of leptin receptors in peripheral tissue raises questions about which of leptin’s biological actions arise from direct effects of the hormone on extraneural tissues and what intracellular mechanisms are responsible for leptin’s effects on carbohydrate and lipid metabolism. The present study is focused on the action of leptin on hepatic metabolism. Nondestructive 13C NMR methodology was used to follow the kinetics of intermediary metabolism by monitoring flux of 13C-labeled substrate through several multistep pathways. In perfused liver from either ob/ob or lean mice, we found that acute treatment with leptin in vitro modulates pathways controlling carbohydrate flux into 13C-labeled glycogen, thereby rapidly enhancing synthesis by an insulin-independent mechanism. Acute treatment of ob/ob liver also caused a rapid stimulation of long-chain fatty acid synthesis from 13C-labeled acetyl-CoA by the de novo synthesis route. Chronic leptin treatment in vivo induced homeostatic changes that resulted in a tripling of the rate of glycogen synthesis via the gluconeogenic pathway from [2-13C]pyruvate in ob/ob mouse liver perfused in the absence of the hormone. Consistent with the 13C NMR results, leptin treatment of the ob/ob mouse in vivo resulted in significantly increased hepatic glycogen synthase activity. Chronic treatment with leptin in vivo exerted the opposite effect of acute treatment in vitro and markedly decreased hepatic de novo synthesis of fatty acids in ob/ob mouse liver. In agreement with the 13C NMR findings, activities of hepatic acetyl-CoA carboxylase and fatty acid synthase were significantly reduced by chronic treatment of the ob/ob mouse with leptin. Our data represent a demonstration of direct effects of leptin in the regulation of metabolism in the intact functioning liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants, unlike other higher eukaryotes, possess all the necessary enzymatic equipment for de novo synthesis of methionine, an amino acid that supports additional roles than simply serving as a building block for protein synthesis. This is because methionine is the immediate precursor of S-adenosylmethionine (AdoMet), which plays numerous roles of being the major methyl-group donor in transmethylation reactions and an intermediate in the biosynthesis of polyamines and of the phytohormone ethylene. In addition, AdoMet has regulatory function in plants behaving as an allosteric activator of threonine synthase. Among the AdoMet-dependent reactions occurring in plants, methylation of cytosine residues in DNA has raised recent interest because impediment of this function alters plant morphology and induces homeotic alterations in flower organs. Also, AdoMet metabolism seems somehow implicated in plant growth via an as yet fully understood link with plant-growth hormones such as cytokinins and auxin and in plant pathogen interactions. Because of this central role in cellular metabolism, a precise knowledge of the biosynthetic pathways that are responsible for homeostatic regulation of methionine and AdoMet in plants has practical implications, particularly in herbicide design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stress-activated protein kinases JNK and p38 mediate increased gene expression and are activated by environmental stresses and proinflammatory cytokines. Using an in vivo model in which oxidative stress is generated in the liver by intracellular metabolism, rapid protein–DNA complex formation on stress-activated AP-1 target genes was observed. Analysis of the induced binding complexes indicates that c-fos, c-jun, and ATF-2 were present, but also two additional jun family members, JunB and JunD. Activation of JNK precedes increased AP-1 DNA binding. Furthermore, JunB was shown to be a substrate for JNK, and phosphorylation requires the N-terminal activation domain. Unexpectedly, p38 activity was found to be constitutively active in the liver and was down-regulated through selective dephosphorylation following oxidative stress. One potential mechanism for p38 dephosphorylation is the rapid stress-induced activation of the phosphatase MKP-1, which has high affinity for phosphorylated p38 as a substrate. These data demonstrate that there are mechanisms for independent regulation of the JNK and p38 mitogen-activated protein kinase signal transduction pathways after metabolic oxidative stress in the liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatocyte nuclear factor 4α (HNF4α) plays a critical role in regulating the expression of many genes essential for normal functioning of liver, gut, kidney, and pancreatic islets. A nonsense mutation (Q268X) in exon 7 of the HNF4α gene is responsible for an autosomal dominant, early-onset form of non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young; gene named MODY1). Although this mutation is predicted to delete 187 C-terminal amino acids of the HNF4α protein the molecular mechanism by which it causes diabetes is unknown. To address this, we first studied the functional properties of the MODY1 mutant protein. We show that it has lost its transcriptional transactivation activity, fails to dimerize and bind DNA, implying that the MODY1 phenotype is because of a loss of HNF4α function. The effect of loss of function on HNF4α target gene expression was investigated further in embryonic stem cells, which are amenable to genetic manipulation and can be induced to form visceral endoderm. Because the visceral endoderm shares many properties with the liver and pancreatic β-cells, including expression of genes for glucose transport and metabolism, it offers an ideal system to investigate HNF4-dependent gene regulation in glucose homeostasis. By exploiting this system we have identified several genes encoding components of the glucose-dependent insulin secretion pathway whose expression is dependent upon HNF4α. These include glucose transporter 2, and the glycolytic enzymes aldolase B and glyceraldehyde-3-phosphate dehydrogenase, and liver pyruvate kinase. In addition we have found that expression of the fatty acid binding proteins and cellular retinol binding protein also are down-regulated in the absence of HNF4α. These data provide direct evidence that HNF4α is critical for regulating glucose transport and glycolysis and in doing so is crucial for maintaining glucose homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of glucokinase (GK; EC 2.7.1.12) in glucose homeostasis has been demonstrated by the association of GK mutations with diabetes mellitus in humans and by alterations in glucose metabolism in transgenic and gene knockout mice. Liver GK activity in humans and rodents is allosterically inhibited by GK regulatory protein (GKRP). To further understand the role of GKRP in GK regulation, the mouse GKRP gene was inactivated. With the knockout of the GKRP gene, there was a parallel loss of GK protein and activity in mutant mouse liver. The loss was primarily because of posttranscriptional regulation of GK, indicating a positive regulatory role for GKRP in maintaining GK levels and activity. As in rat hepatocytes, both GK and GKRP were localized in the nuclei of mouse hepatocytes cultured in low-glucose-containing medium. In the presence of fructose or high concentrations of glucose, conditions known to relieve GK inhibition by GKRP in vitro, only GK was translocated into the cytoplasm. In the GKRP-mutant hepatocytes, GK was not found in the nucleus under any tested conditions. We propose that GKRP functions as an anchor to sequester and inhibit GK in the hepatocyte nucleus, where it is protected from degradation. This ensures that glucose phosphorylation is minimal when the liver is in the fasting, glucose-producing phase. This also enables the hepatocytes to rapidly mobilize GK into the cytoplasm to phosphorylate and store or metabolize glucose after the ingestion of dietary glucose. In GKRP-mutant mice, the disruption of this regulation and the subsequent decrease in GK activity leads to altered glucose metabolism and impaired glycemic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rad is the prototypic member of a new class of Ras-related GTPases. Purification of the GTPase-activating protein (GAP) for Rad revealed nm23, a putative tumor metastasis suppressor and a development gene in Drosophila. Antibodies against nm23 depleted Rad-GAP activity from human skeletal muscle cytosol, and bacterially expressed nm23 reconstituted the activity. The GAP activity of nm23 was specific for Rad, was absent with the S105N putative dominant negative mutant of Rad, and was reduced with mutations of nm23. In the presence of ATP, GDP⋅Rad was also reconverted to GTP⋅Rad by the nucleoside diphosphate (NDP) kinase activity of nm23. Simultaneously, Rad regulated nm23 by enhancing its NDP kinase activity and decreasing its autophosphorylation. Melanoma cells transfected with wild-type Rad, but not the S105N-Rad, showed enhanced DNA synthesis in response to serum; this effect was lost with coexpression of nm23. Thus, the interaction of nm23 and Rad provides a potential novel mechanism for bidirectional, bimolecular regulation in which nm23 stimulates both GTP hydrolysis and GTP loading of Rad whereas Rad regulates activity of nm23. This interaction may play important roles in the effects of Rad on glucose metabolism and the effects of nm23 on tumor metastasis and developmental regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have proposed that reduced activity of inosine-5′-monophosphate dehydrogenase (IMPD; IMP:NAD oxidoreductase, EC 1.2.1.14), the rate-limiting enzyme for guanine nucleotide biosynthesis, in response to wild-type p53 expression, is essential for p53-dependent growth suppression. A gene transfer strategy was used to demonstrate that under physiological conditions constitutive IMPD expression prevents p53-dependent growth suppression. In these studies, expression of bax and waf1, genes implicated in p53-dependent growth suppression in response to DNA damage, remains elevated in response to p53. These findings indicate that under physiological conditions IMPD is a rate-determining factor for p53-dependent growth regulation. In addition, they suggest that the impd gene may be epistatic to bax and waf1 in growth suppression. Because of the role of IMPD in the production and balance of GTP and ATP, essential nucleotides for signal transduction, these results suggest that p53 controls cell division signals by regulating purine ribonucleotide metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three cytosolic and one plasma membrane-bound 5′-nucleotidases have been cloned and characterized. Their various substrate specificities suggest widely different functions in nucleotide metabolism. We now describe a 5′-nucleotidase in mitochondria. The enzyme, named dNT-2, dephosphorylates specifically the 5′- and 2′(3′)-phosphates of uracil and thymine deoxyribonucleotides. The cDNA of human dNT-2 codes for a 25.9-kDa polypeptide with a typical mitochondrial leader peptide, providing the structural basis for two-step processing during import into the mitochondrial matrix. The deduced amino acid sequence is 52% identical to that of a recently described cytosolic deoxyribonucleotidase (dNT-1). The two enzymes share many catalytic properties, but dNT-2 shows a narrower substrate specificity. Mitochondrial localization of dNT-2 was demonstrated by the mitochondrial fluorescence of 293 cells expressing a dNT-2-green fluorescent protein (GFP) fusion protein. 293 cells expressing fusion proteins without leader peptide or with dNT-1 showed a cytosolic fluorescence. During in vitro import into mitochondria, the preprotein lost the leader peptide. We suggest that dNT-2 protects mitochondrial DNA replication from overproduction of dTTP, in particular in resting cells. Mitochondrial toxicity of dTTP can be inferred from a severe inborn error of metabolism in which the loss of thymidine phosphorylase led to dTTP accumulation and aberrant mitochondrial DNA replication. We localized the gene for dNT-2 on chromosome 17p11.2 in the Smith–Magenis syndrome-critical region, raising the possibility that dNT-2 is involved in the etiology of this genetic disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brain has enormous anabolic needs during early postnatal development. This study presents multiple lines of evidence showing that endogenous brain insulin-like growth factor 1 (Igf1) serves an essential, insulin-like role in promoting neuronal glucose utilization and growth during this period. Brain 2-deoxy-d- [1-14C]glucose uptake parallels Igf1 expression in wild-type mice and is profoundly reduced in Igf1−/− mice, particularly in those structures where Igf1 is normally most highly expressed. 2-Deoxy-d- [1-14C]glucose is significantly reduced in synaptosomes prepared from Igf1−/− brains, and the deficit is corrected by inclusion of Igf1 in the incubation medium. The serine/threonine kinase Akt/PKB is a major target of insulin-signaling in the regulation of glucose transport via the facilitative glucose transporter (GLUT4) and glycogen synthesis in peripheral tissues. Phosphorylation of Akt and GLUT4 expression are reduced in Igf1−/− neurons. Phosphorylation of glycogen synthase kinase 3β and glycogen accumulation also are reduced in Igf1−/− neurons. These data support the hypothesis that endogenous brain Igf1 serves an anabolic, insulin-like role in developing brain metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metabolism of phosphatidylinositol-4,5-bisphosphate (PIP2) changed during the culture period of the thermoacidophilic red alga Galdieria sulphuraria. Seven days after inoculation, the amount of PIP2 in the cells was 910 ± 100 pmol g−1 fresh weight; by 12 d, PIP2 levels increased to 1200 ± 150 pmol g−1 fresh weight. In vitro assays indicated that phosphatidylinositol monophosphate (PIP) kinase specific activity increased from 75 to 230 pmol min−1 mg−1 protein between d 7 and 12. When G. sulphuraria cells were osmostimulated, transient increases of up to 4-fold could be observed in inositol-1,4,5-trisphosphate (IP3) levels within 90 s, regardless of the age of the cells. In d-12 cells, the increase in IP3 was preceded by a transient increase of up to 5-fold in specific PIP kinase activity, whereas no such increase was detected after osmostimulation of d-7 cells. The increase in PIP kinase activity before IP3 signaling in d-12 cells indicates that there is an additional pathway for regulation of phosphoinositide metabolism after stimulation other than an initial activation of phospholipase C. Also, the rapid activation of PIP2 biosynthesis in cells with already-high PIP2 levels suggests that the PIP2 present was not available for signal transduction. By comparing the response of the cells at d 7 and 12, we have identified two potentially distinct pools of PIP2.