937 resultados para Mediator
Resumo:
Hypertension-induced left ventricular hypertrophy (LVH), along with ischemic heart disease, result in LV remodeling as part of a continuum that often leads to congestive heart failure. The neurohormonal model has been used to underpin many treatment strategies, but optimal outcomes have not been achieved. Neuropeptide Y (NPY) has emerged as an additional therapeutic target, ever since it was recognised as an important mediator released from sympathetic nerves in the heart, affecting coronary artery constriction and myocardial contraction. More recent interest has focused on the mitogenic and hypertrophic effects that are observed in endothelial and vascular smooth muscle cells, and cardiac myocytes. Of the six identified NPY receptor subtypes, Y-1, Y-2, and Y-5 appear to mediate the main functional responses in the heart. Plasma levels of NPY become elevated due to the increased sympathetic activation present in stress-related cardiac conditions. Also, NPY and Y receptor polymorphisms have been identified that may predispose individuals to increased risk of hypertension and cardiac complications. This review examines what understanding exists regarding the likely contribution of NPY to cardiac pathology. It appears that NPY may play a part in compensatory or detrimental remodeling of myocardial tissue subsequent to hemodynamic overload or myocardial infarction, and in angiogenic processes to regenerate myocardium after ischemic injury. However, greater mechanistic information is required in order to truly assess the potential for treatment of cardiac diseases using NPY-based drugs.
Resumo:
We present a novel Service Level Agreement (SLA)-driven service provisioning architecture, which enables dynamic and flexible bandwidth reservation schemes on a per-user or per-application basis. Various session level SLA negotiation schemes involving bandwidth allocation, service start time and service duration parameters are introduced and analyzed. The results show that these negotiation schemes can be utilized for the benefit of both end users and network providers in achieving the highest individual SLA optimization in terms of key Quality of Service (QoS) metrics and price. The inherent characteristics of software agents such as autonomy, adaptability and social abilities offer many advantages in this dynamic, complex, and distributed network environment especially when performing Service Level Agreements (SLA) definition negotiations and brokering tasks. This article also presents a service broker prototype based on Fujitsu's Phoenix Open Agent Mediator (OAM) agent technology, which was used to demonstrate a range of SLA brokering scenarios.
Resumo:
The aim of this article is to review the interplay between adenosine and mast cells in asthma. Adenosine is an endogenous nucleoside released from metabolically active cells and generated extracellularly via the degradation of released ATP. It is a potent biological mediator that modulates the activity of numerous cell types including platelets, neutrophils and mast cells via action at specific adenosine receptors (A(1), A(2a), A(2b), A(3)). These receptors are expressed on mast cells but the exact pattern of receptor subtype expression depends on the source of the mast cells. Adenosine is also a potent bronchoconstricting agent and is suggested to contribute to the pathophysiology of asthma. Evidence is provided to suggest that the nucleoside exerts its influence on the asthmatic condition through its ability to modulate the release of mast cell derived mediators. However, the mechanism of adenosine/mast cell interaction which contributes to asthma remains unclear. Progress in the area has been hampered by the heterogeneity of mast cell responses and a lack of highly specific receptor agonists and antagonists. The expression of different adenosine receptor subtypes on mast cells is described. The final section of the review presents data to suggest that BAL mast cells may provide an accurate and relevant model for future investigations and together with the development of superior pharmacological tools, may aid the realisation of the therapeutic potential of adenosine/mast cell interactions in asthma. In conclusion, the role of adenosine in asthma is clearly complex. A better understanding of the contribution of adenosine to the asthmatic condition may lead to novel therapeutic approaches in the treatment of the disease.
Resumo:
The hydroxymethylglutaryl coenzmye A (HMG CoA) reductase inhibitor lovastatin is used to treat hyperlipidaemia. This agent prevents the isoprenylation of some proteins involved in signal transduction processes and inhibits IgE-receptor-linked mediator release from RBL-2H3 cells. In this study the effect of in vivo and in vitro administration of lovastatin on histamine release from rat peritoneal mast cells was examined. Lovastatin (4 mg/kg/day for 2 weeks) inhibited histamine release induced by concanavalin A (con A) from rat peritoneal mast cells of Hooded-Lister rats and both homozygous lean and obese Zucker rats. In contrast, release induced by antirat IgE (anti-IgE) was only significantly inhibited in cells derived from Hooded-Lister rats and that induced by compound 48/ 80 was not altered. Lovastatin (20 mu M, 24 h, in vitro) caused a significant inhibition of the subsequent histamine release to con A, anti-IgE and compound 48/80 but not to the calcium ionophore A 23187. It is important to determine whether such inhibitory effects are also observed after the chronic, clinical administration of lovastatin and other HMG CoA reductase inhibitors.
Resumo:
Multiple extracellular mitogens are involved in the pathogenesis of proliferative forms of glomerulonephritis (GN), In vitro studies demonstrate the pivotal role of extracellular signal-regulated kinase (ERK) in the regulation of cellular proliferation in response to extracellular mitogens. In this study, we examined whether this kinase, as a convergence point of mitogenic stimuli, is activated in proliferative GN in vivo, Two different proliferative forms of anti-glomerular basal membrane (GEM) GN in rats were induced and whole cortical tissue as well as isolated glomeruli examined using kinase activity assays and Western blot analysis, Administration of rabbit anti-rat GEM serum to rats, preimmunized with rabbit IgG, induced an accelerated crescentic anti-GEM GN. A significant increase in cortical, and more dramatically glomerular ERK activity was detected at 1, 3, and 7 d after induction of GN, Immunization of Wistar-Kyoto rats with bovine GEM also induced a crescentic anti-GBM GN with an increase of renal cortical ERK activity after 4, 6, and 8 wk, ERK is phosphorylated and activated by the MAP kinase/ERK kinase (MEK), We detected a significant increase in the expression of glomerular MEK in the accelerated form of anti-GEM CN, providing a possible mechanism of long-term activation of ERK in this disease model, In contrast to ERK, activation of stress-activated protein kinase was only detectable at early stages of proliferative GN, indicating these related kinases to serve distinct roles in the pathogenesis of GN, Our observations point to ERK as a putative mediator of the proliferative response to immune injury in GN and suggest that upregulation of MEK is involved in the long-term regulation of ERK in vivo.
Resumo:
Purpose: In ischemic retinopathies, the misdirection of reparative angiogenesis away from the hypoxic retina leads to pathologic neovascularization. Thus, therapeutic strategies that reverse this trend would be extremely beneficial. Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is an important mediator of vascular endothelial growth factor (VEGF) function facilitating vascular growth and maturation. However, in addition to NO, eNOS can also produce superoxide (O), exacerbating pathology. Here, our aim was to investigate the effect of eNOS overexpression on vascular closure and subsequent recovery of the ischemic retina.
Methods: Mice overexpressing eNOS-GFP were subjected to oxygen-induced retinopathy (OIR) and changes in retinal vascularization quantified. Background angiogenic drive was assessed during vascular development and in aortic rings. NOS activity was measured by Griess assay or conversion of radiolabeled arginine to citrulline, nitrotyrosine (NT), and superoxide by immunolabeling and dihydroethidium fluorescence and VEGF by ELISA.
Results: In response to hyperoxia, enhanced eNOS expression led to increased NOS-derived superoxide and dysfunctional NO production, NT accumulation, and exacerbated vessel closure associated with tetrahydrobiopterin (BH) insufficiency. Despite worse vaso-obliteration, eNOS overexpression resulted in elevated hypoxia-induced angiogenic drive, independent of VEGF production. This correlated with increased vascular branching similar to that observed in isolated aortas and during development. Enhanced recovery was also associated with neovascular tuft formation, which showed defective NO production and increased eNOS-derived superoxide and NT levels.
Conclusions: In hyperoxia, reduced BH bioavailability causes overexpressed eNOS to become dysfunctional, exacerbating vaso-obliteration. In the proliferative phase, however, eNOS has important prorepair functions enhancing angiogenic growth potential and recovery in ischemia. © 2012 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
Cultured primary epithelial cells are used to examine inflammation in cystic fibrosis (CF). We describe a new human model system using cultured nasal brushings. Nasal brushings were obtained from 16 F508del homozygous patients and 11 healthy controls. Cells were resuspended in airway epithelial growth medium and seeded onto collagen-coated flasks and membranes for use in patch-clamp, ion transport, and mediator release assays. Viable cultures were obtained with a 75% success rate from subjects with CF and 100% from control subjects. Amiloride-sensitive epithelial Na channel current of similar size was present in both cell types while forskolin-activated CF transmembrane conductance regulator current was lacking in CF cells. In Ussing chambers, cells from CF patients responded to UTP but not to forskolin. Spontaneous and cytomix-stimulated IL-8 release was similar (stimulated 29,448 ± 9,025 pg/ml; control 16,336 ± 3,308 pg/ml CF; means ± SE). Thus nasal epithelial cells from patients with CF can be grown from nasal brushings and used in electrophysiological and mediator release studies in CF research.
Resumo:
Epithelial ovarian cancer (EOC) has an innate susceptibility to become chemoresistant. Up to 30% of patients do not respond to conventional chemotherapy [paclitaxel (Taxol®) in combination with carboplatin] and, of those who have an initial response, many patients relapse. Therefore, an understanding of the molecular mechanisms that regulate cellular chemotherapeutic responses in EOC cells has the potential to impact significantly on patient outcome. The mitotic arrest deficiency protein 2 (MAD2), is a centrally important mediator of the cellular response to paclitaxel. MAD2 immunohistochemical analysis was performed on 82 high-grade serous EOC samples. A multivariate Cox regression analysis of nuclear MAD2 IHC intensity adjusting for stage, tumour grade and optimum surgical debulking revealed that low MAD2 IHC staining intensity was significantly associated with reduced progression-free survival (PFS) (p = 0.0003), with a hazard ratio of 4.689. The in vitro analyses of five ovarian cancer cell lines demonstrated that cells with low MAD2 expression were less sensitive to paclitaxel. Furthermore, paclitaxel-induced activation of the spindle assembly checkpoint (SAC) and apoptotic cell death was abrogated in cells transfected with MAD2 siRNA. In silico analysis identified a miR-433 binding domain in the MAD2 3' UTR, which was verified in a series of experiments. Firstly, MAD2 protein expression levels were down-regulated in pre-miR-433 transfected A2780 cells. Secondly, pre-miR-433 suppressed the activity of a reporter construct containing the 3'-UTR of MAD2. Thirdly, blocking miR-433 binding to the MAD2 3' UTR protected MAD2 from miR-433 induced protein down-regulation. Importantly, reduced MAD2 protein expression in pre-miR-433-transfected A2780 cells rendered these cells less sensitive to paclitaxel. In conclusion, loss of MAD2 protein expression results in increased resistance to paclitaxel in EOC cells. Measuring MAD2 IHC staining intensity may predict paclitaxel responses in women presenting with high-grade serous EOC.
Resumo:
Connective tissue growth factor (CTGF/CCN2) is a 38-kDa secreted protein, a prototypic member of the CCN family, which is up-regulated in many diseases, including atherosclerosis, pulmonary fibrosis, and diabetic nephropathy. We previously showed that CTGF can cause actin disassembly with concurrent down-regulation of the small GTPase Rho A and proposed an integrated signaling network connecting focal adhesion dissolution and actin disassembly with cell polarization and migration. Here, we further delineate the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The functional response of mesangial cells to treatment with CTGF was associated with the phosphorylation of Akt/protein kinase B (PKB) and resultant phosphorylation of a number of Akt/PKB substrates. Two of these substrates were identified as FKHR and p27(Kip-1). CTGF stimulated the phosphorylation and cytoplasmic translocation of p27(Kip-1) on serine 10. Addition of the PI-3 kinase inhibitor LY294002 abrogated this response; moreover, addition of the Akt/PKB inhibitor interleukin (IL)-6-hydroxymethyl-chiro-inositol-2(R)-2-methyl-3-O-octadecylcarbonate prevented p27(Kip-1) phosphorylation in response to CTGF. Immunocytochemistry revealed that serine 10 phosphorylated p27(Kip-1) colocalized with the ends of actin filaments in cells treated with CTGF. Further investigation of other Akt/PKB sites on p27(Kip-1), revealed that phosphorylation on threonine 157 was necessary for CTGF mediated p27(Kip-1) cytoplasmic localization; mutation of the threonine 157 site prevented cytoplasmic localization, protected against actin disassembly and inhibited cell migration. CTGF also stimulated an increased association between Rho A and p27(Kip-1). Interestingly, this resulted in an increase in phosphorylation of LIM kinase and subsequent phosphorylation of cofilin, suggesting that CTGF mediated p27(Kip-1) activation results in uncoupling of the Rho A/LIM kinase/cofilin pathway. Confirming the central role of Akt/PKB, CTGF-stimulated actin depolymerization only in wild-type mouse embryonic fibroblasts (MEFs) compared to Akt-1/3 (PKB alpha/gamma) knockout MEFs. These data reveal important mechanistic insights into how CTGF may contribute to mesangial cell dysfunction in the diabetic milieu and sheds new light on the proposed role of p27(Kip-1) as a mediator of actin rearrangement.
Resumo:
Connective tissue growth factor [CTGF]/CCN2 is a prototypic member of the CCN family of regulatory proteins. CTGF expression is up-regulated in a number of fibrotic diseases, including diabetic nephropathy, where it is believed to act as a downstream mediator of TGF-beta function; however, the exact mechanisms whereby CTGF mediates its effects remain unclear. Here, we describe the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The addition of CTGF to primary mesangial cells induced cell migration and cytoskeletal rearrangement but had no effect on cell proliferation. Cytoskeletal rearrangement was associated with a loss of focal adhesions, involving tyrosine dephosphorylation of focal adhesion kinase and paxillin, increased activity of the protein tyrosine phosphatase SHP-2, with a concomitant decrease in RhoA and Rac1 activity. Conversely, Cdc42 activity was increased by CTGF. These functional responses were associated with the phosphorylation and translocation of protein kinase C-zeta to the leading edge of migrating cells. Inhibition of CTGF-induced protein kinase C-zeta activity with a myristolated PKC-zeta inhibitor prevented cell migration. Moreover, transient transfection of human mesangial cells with a PKC-zeta kinase inactive mutant (dominant negative) expression vector also led to a decrease in CTGF-induced migration compared with wild-type. Furthermore, CTGF stimulated phosphorylation and activation of GSK-3beta. These data highlight for the first time an integrated mechanism whereby CTGF regulates cell migration through facilitative actin cytoskeleton disassembly, which is mediated by dephosphorylation of focal adhesion kinase and paxillin, loss of RhoA activity, activation of Cdc42, and phosphorylation of PKC-zeta and GSK-3beta. These changes indicate that the initial stages of CTGF mediated mesangial cell migration are similar to those involved in the process of cell polarization. These findings begin to shed mechanistic light on the renal diabetic milieu, where increased CTGF expression in the glomerulus contributes to cellular dysfunction.
Resumo:
We have previously demonstrated that remote ischemic preconditioning (IPC) by instigation of three cycles of 10-min occlusion/reperfusion in a hindlimb of the pig elicits an early phase of infarct protection in local and distant skeletal muscles subjected to 4 h of ischemia immediately after remote IPC. The aim of this project was to test our hypothesis that hindlimb remote IPC also induces a late phase of infarct protection in skeletal muscle and that K(ATP) channels play a pivotal role in the trigger and mediator mechanisms. We observed that pig bilateral latissimus dorsi (LD) muscle flaps sustained 46 +/- 2% infarction when subjected to 4 h of ischemia/48 h of reperfusion. The late phase of infarct protection appeared at 24 h and lasted up to 72 h after hindlimb remote IPC. The LD muscle infarction was reduced to 28 +/- 3, 26 +/- 1, 23 +/- 2, 24 +/- 2 and 24 +/- 4% at 24, 28, 36, 48 and 72 h after remote IPC, respectively (P <0.05; n = 8). In subsequent studies, hindlimb remote IPC or intravenous injection of the sarcolemmal K(ATP) (sK(ATP)) channel opener P-1075 (2 microg/kg) at 24 h before 4 h of sustained ischemia (i.e., late preconditioning) reduced muscle infarction from 43 +/- 4% (ischemic control) to 24 +/- 2 and 19 +/- 3%, respectively (P <0.05, n = 8). Intravenous injection of the sK(ATP) channel inhibitor HMR 1098 (6 mg/kg) or the nonspecific K(ATP) channel inhibitor glibenclamide (Glib; 1 mg/kg) at 10 min before remote IPC completely blocked the infarct- protective effect of remote IPC in LD muscle flaps subjected to 4 h of sustained ischemia at 24 h after remote IPC. Intravenous bolus injection of the mitochondrial K(ATP) (mK(ATP)) channel inhibitor 5-hydroxydecanoate (5-HD; 5 mg/kg) immediately before remote IPC and 30-min intravenous infusion of 5-HD (5 mg/kg) during remote IPC did not affect the infarct-protective effect of remote IPC in LD muscle flaps. However, intravenous Glib or 5-HD, but not HMR 1098, given 24 h after remote IPC completely blocked the late infarct-protective effect of remote IPC in LD muscle flaps. None of these drug treatments affected the infarct size of control LD muscle flaps. The late phase of infarct protection was associated with a higher (P <0.05) muscle content of ATP at the end of 4 h of ischemia and 1.5 h of reperfusion and a lower (P <0.05) neutrophilic activity at the end of 1.5 h of reperfusion compared with the time-matched control. In conclusion, these findings support our hypothesis that hindlimb remote IPC induces an uninterrupted long (48 h) late phase of infarct protection, and sK(ATP) and mK(ATP) channels play a central role in the trigger and mediator mechanism, respectively.
Resumo:
OBJECTIVES:
The intrinsically encoded ramA gene has been linked to tigecycline resistance through the up-regulation of efflux pump AcrAB in Enterobacter cloacae. The molecular basis for increased ramA expression in E. cloacae and Enterobacter aerogenes, as well as the role of AraC regulator rarA, has not yet been shown. To ascertain the intrinsic molecular mechanism(s) involved in tigecycline resistance in Enterobacter spp., we analysed the expression levels of ramA and rarA and corresponding efflux pump genes acrAB and oqxAB in Enterobacter spp. clinical isolates.
METHODS:
The expression levels of ramA, rarA, oqxA and acrA were tested by quantitative real-time RT-PCR. The ramR open reading frames of the ramA-overexpressing strains were sequenced; strains harbouring mutations were transformed with wild-type ramR to study altered ramA expression and tigecycline susceptibility.
RESULTS:
Tigecycline resistance was mediated primarily by increased ramA expression in E. cloacae and E. aerogenes. Only the ramA-overexpressing E. cloacae isolates showed increased rarA and oqxA expression. Upon complementation with wild-type ramR, all Enterobacter spp. containing ramR mutations exhibited decreased ramA and acrA expression and increased tigecycline susceptibility. Exceptions were one E. cloacae strain and one E. aerogenes strain, where a decrease in ramA levels was not accompanied by lower acrA expression.
CONCLUSIONS:
Increased ramA expression due to ramR deregulation is the primary mediator of tigecycline resistance in clinical isolates of E. cloacae and E. aerogenes. However, some ramA-overexpressing isolates do not show changes in ramR, suggesting alternate pathways of ramA regulation; the rarA regulator and the oqxAB efflux pump may also play a role in tigecycline resistance in E. cloacae.
Resumo:
Diabetic nephropathy (DN) is a progressive fibrotic condition that may lead to end-stage renal disease and kidney failure. Transforming growth factor-ß1 and bone morphogenetic protein-7 (BMP7) have been shown to induce DN-like changes in the kidney and protect the kidney from such changes, respectively. Recent data identified insulin action at the level of the nephron as a crucial factor in the development and progression of DN. Insulin requires a family of insulin receptor substrate (IRS) proteins for its physiological effects, and many reports have highlighted the role of insulin and IRS proteins in kidney physiology and disease. Here, we observed IRS2 expression predominantly in the developing and adult kidney epithelium in mouse and human. BMP7 treatment of human kidney proximal tubule epithelial cells (HK-2 cells) increases IRS2 transcription. In addition, BMP7 treatment of HK-2 cells induces an electrophoretic shift in IRS2 migration on SDS/PAGE, and increased association with phosphatidylinositol-3-kinase, probably due to increased tyrosine/serine phosphorylation. In a cohort of DN patients with a range of chronic kidney disease severity, IRS2 mRNA levels were elevated approximately ninefold, with the majority of IRS2 staining evident in the kidney tubules in DN patients. These data show that IRS2 is expressed in the kidney epithelium and may play a role in the downstream protective events triggered by BMP7 in the kidney. The specific up-regulation of IRS2 in the kidney tubules of DN patients also indicates a novel role for IRS2 as a marker and/or mediator of human DN progression.
Resumo:
The construction industry notoriously excels at dispute creation – both in Ireland and world wide. This paper exams mediation in the Irish construction industry based around critical success factors in the competencies and processes required by mediators operating in the construction industry. Through conducting the relevant analysis, it was possible to extract and outline the resulting critical success factors in process and competencies of mediators in the Irish construction industry. This was achieved through a review of the literature, followed by detailed interviews from industry experts to elicit and highlight the core competencies required. To aid in the study, qualitative analysis using mind mapping software was adopted, thus assisting the identification of the key factors. Following analysis, facilitative mediation was identified as best suited for the industry in question; recommendations and experience were key for mediator selection and five and six factors were identified for mediator skills and mediation critical success factors respectively. The results returned are similar to those determined by authors in other countries and provide a good reference point for the development the industry. By following the findings of this report mediators and parties in dispute can improve processes and be more successful in outcomes. In this study the author shows that mediation is an effective and appropriate method of resolving disputes within the Irish construction industry.
Resumo:
Three studies demonstrated that the moral judgments of religious individuals and political conservatives are highly insensitive to consequentialist (i.e., outcome-based) considerations. In Study 1, both religiosity and political conservatism predicted a resistance toward consequentialist thinking concerning a range of transgressive acts, independent of other relevant dispositional factors (e.g., disgust sensitivity). Study 2 ruled out differences in welfare sensitivity as an explanation for these findings. In Study 3, religiosity and political conservatism predicted a commitment to judging “harmless” taboo violations morally impermissible, rather than discretionary, despite the lack of negative consequences rising from the act. Furthermore, non-consequentialist thinking style was shown to mediate the relationship religiosity/conservatism had with impermissibility judgments, while intuitive thinking style did not. These data provide further evidence for the influence of religious and political commitments in motivating divergent moral judgments, while highlighting a new dispositional factor, non-consequentialist thinking style, as a mediator of these effects.