817 resultados para Media annotation and retrieval
Resumo:
Between 8 and 40% of Parkinson disease (PD) patients will have visual hallucinations (VHs) during the course of their illness. Although cognitive impairment has been identified as a risk factor for hallucinations, more specific neuropsychological deficits underlying such phenomena have not been established. Research in psychopathology has converged to suggest that hallucinations are associated with confusion between internal representations of events and real events (i.e. impaired-source monitoring). We evaluated three groups: 17 Parkinson's patients with visual hallucinations, 20 Parkinson's patients without hallucinations and 20 age-matched controls, using tests of visual imagery, visual perception and memory, including tests of source monitoring and recollective experience. The study revealed that Parkinson's patients with hallucinations appear to have intact visual imagery processes and spatial perception. However, there were impairments in object perception and recognition memory, and poor recollection of the encoding episode in comparison to both non-hallucinating Parkinson's patients and healthy controls. Errors were especially likely to occur when encoding and retrieval cues were in different modalities. The findings raise the possibility that visual hallucinations in Parkinson's patients could stem from a combination of faulty perceptual processing of environmental stimuli, and less detailed recollection of experience combined with intact image generation. (C) 2002 Elsevier Science Ltd. All fights reserved.
Resumo:
Many projects, e.g. VIKEF [13] and KIM [7], present grounded approaches for the use of entities as a means of indexing and retrieval of multimedia resources from heterogeneous sources. In this paper, we discuss the state-of-the-art of entity-centric approaches for multimedia indexing and retrieval. A summary of projects employing entity-centric repositories are portrayed. This paper also looks at the current state-of-the-art authoring environment, Macromedia Authorware, and the possibility of potential extension of this environment for entity-based multimedia authoring.
Resumo:
A novel framework for multimodal semantic-associative collateral image labelling, aiming at associating image regions with textual keywords, is described. Both the primary image and collateral textual modalities are exploited in a cooperative and complementary fashion. The collateral content and context based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix, of the visual keywords, A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. Finally, we use Self Organising Maps to examine the classification and retrieval effectiveness of the proposed high-level image feature vector model which is constructed based on the image labelling results.
Resumo:
This article discusses approaches to the interpretation and analysis an event that is poised between reality and performance. It focuses upon a real event witnessed by the author while driving out of Los Angeles, USA. A body hanging on a rope from a bridge some 25/30 feet above the freeway held up the traffic. The status of the body was unclear. Was it the corpse of a dead human being or a stuffed dummy, a simulation of a death? Was it is tragic accident or suicide or was it a stunt, a protest or a performance? Whether a real body or not, it was an event: it drew an audience, it took place in a defined public space bound by time and it disrupted everyday normality and the familiar. The article debates how approaches to performance can engage with a shocking event, such as the Hanging Man, and the frameworks of interpretation that can be brought to bear on it. The analysis takes account of the function of memory in reconstructing the event, and the paradigms of cultural knowledge that offered themselves as parallels, comparators or distinctions against which the experience could be measured, such as the incidents of self-immolation related to demonstrations against the Vietnam War, the protest by the Irish Hunger Strikers and the visual impact of Anthony Gormley’s 2007 work, 'Event Horizon'. Theoretical frameworks deriving from analytical approaches to performance, media representation and ethical dilemmas are evaluated as means to assimilate an indeterminate and challenging event, and the notion of what an ‘event’ may be is itself addressed.
Resumo:
In the emerging digital economy, the management of information in aerospace and construction organisations is facing a particular challenge due to the ever-increasing volume of information and the extensive use of information and communication technologies (ICTs). This paper addresses the problems of information overload and the value of information in both industries by providing some cross-disciplinary insights. In particular it identifies major issues and challenges in the current information evaluation practice in these two industries. Interviews were conducted to get a spectrum of industrial perspectives (director/strategic, project management and ICT/document management) on these issues in particular to information storage and retrieval strategies and the contrasting approaches to knowledge and information management of personalisation and codification. Industry feedback was collected by a follow-up workshop to strengthen the findings of the research. An information-handling agenda is outlined for the development of a future Information Evaluation Methodology (IEM) which could facilitate the practice of the codification of high-value information in order to support through-life knowledge and information management (K&IM) practice.
Resumo:
Undeniably, anticipation plays a crucial role in cognition. By what means, to what extent, and what it achieves remain open questions. In a recent BBS target article, Clark (in press) depicts an integrative model of the brain that builds on hierarchical Bayesian models of neural processing (Rao and Ballard, 1999; Friston, 2005; Brown et al., 2011), and their most recent formulation using the free-energy principle borrowed from thermodynamics (Feldman and Friston, 2010; Friston, 2010; Friston et al., 2010). Hierarchical generative models of cognition, such as those described by Clark, presuppose the manipulation of representations and internal models of the world, in as much detail as is perceptually available. Perhaps surprisingly, Clark acknowledges the existence of a “virtual version of the sensory data” (p. 4), but with no reference to some of the historical debates that shaped cognitive science, related to the storage, manipulation, and retrieval of representations in a cognitive system (Shanahan, 1997), or accounting for the emergence of intentionality within such a system (Searle, 1980; Preston and Bishop, 2002). Instead of demonstrating how this Bayesian framework responds to these foundational questions, Clark describes the structure and the functional properties of an action-oriented, multi-level system that is meant to combine perception, learning, and experience (Niedenthal, 2007).
Resumo:
This research presents a novel multi-functional system for medical Imaging-enabled Assistive Diagnosis (IAD). Although the IAD demonstrator has focused on abdominal images and supports the clinical diagnosis of kidneys using CT/MRI imaging, it can be adapted to work on image delineation, annotation and 3D real-size volumetric modelling of other organ structures such as the brain, spine, etc. The IAD provides advanced real-time 3D visualisation and measurements with fully automated functionalities as developed in two stages. In the first stage, via the clinically driven user interface, specialist clinicians use CT/MRI imaging datasets to accurately delineate and annotate the kidneys and their possible abnormalities, thus creating “3D Golden Standard Models”. Based on these models, in the second stage, clinical support staff i.e. medical technicians interactively define model-based rules and parameters for the integrated “Automatic Recognition Framework” to achieve results which are closest to that of the clinicians. These specific rules and parameters are stored in “Templates” and can later be used by any clinician to automatically identify organ structures i.e. kidneys and their possible abnormalities. The system also supports the transmission of these “Templates” to another expert for a second opinion. A 3D model of the body, the organs and their possible pathology with real metrics is also integrated. The automatic functionality was tested on eleven MRI datasets (comprising of 286 images) and the 3D models were validated by comparing them with the metrics from the corresponding “3D Golden Standard Models”. The system provides metrics for the evaluation of the results, in terms of Accuracy, Precision, Sensitivity, Specificity and Dice Similarity Coefficient (DSC) so as to enable benchmarking of its performance. The first IAD prototype has produced promising results as its performance accuracy based on the most widely deployed evaluation metric, DSC, yields 97% for the recognition of kidneys and 96% for their abnormalities; whilst across all the above evaluation metrics its performance ranges between 96% and 100%. Further development of the IAD system is in progress to extend and evaluate its clinical diagnostic support capability through development and integration of additional algorithms to offer fully computer-aided identification of other organs and their abnormalities based on CT/MRI/Ultra-sound Imaging.
Resumo:
Social tagging has become very popular around the Internet as well as in research. The main idea behind tagging is to allow users to provide metadata to the web content from their perspective to facilitate categorization and retrieval. There are many factors that influence users' tag choice. Many studies have been conducted to reveal these factors by analysing tagging data. This paper uses two theories to identify these factors, namely the semiotics theory and activity theory. The former treats tags as signs and the latter treats tagging as an activity. The paper uses both theories to analyse tagging behaviour by explaining all aspects of a tagging system, including tags, tagging system components and the tagging activity. The theoretical analysis produced a framework that was used to identify a number of factors. These factors can be considered as categories that can be consulted to redirect user tagging choice in order to support particular tagging behaviour, such as cross-lingual tagging.
Resumo:
The role played by viral marketing has received considerable academic and digital media attention recently. Key issues in viral marketing have been examined through the lens of the mode of marketing message transmission, including self-replicating on the basis of quality difference, individuals’ emotional needs, as well as how users are connected across various social networks. This paper presents a review and analysis of viral marketing studies from 2001 to the present day. It investigates how viral marketing facilitate the diffusion of social media products and the relationship between marketers and these product users by taking a look at the implementation of viral marketing in two European online game firms Jagex Games Studio and Rovio Entertainment. The results from this review and analysis indicate that viral marketing plays an important role in accelerating the interaction between marketers and users (as well as the user groups) in the field of digital media and high tech consumption. Therefore, it is evident that firms should understand the social contagion process and target well-connected users purposefully in order to create its competitive advantage.
Resumo:
We establish a methodology for calculating uncertainties in sea surface temperature estimates from coefficient based satellite retrievals. The uncertainty estimates are derived independently of in-situ data. This enables validation of both the retrieved SSTs and their uncertainty estimate using in-situ data records. The total uncertainty budget is comprised of a number of components, arising from uncorrelated (eg. noise), locally systematic (eg. atmospheric), large scale systematic and sampling effects (for gridded products). The importance of distinguishing these components arises in propagating uncertainty across spatio-temporal scales. We apply the method to SST data retrieved from the Advanced Along Track Scanning Radiometer (AATSR) and validate the results for two different SST retrieval algorithms, both at a per pixel level and for gridded data. We find good agreement between our estimated uncertainties and validation data. This approach to calculating uncertainties in SST retrievals has a wider application to data from other instruments and retrieval of other geophysical variables.
Resumo:
Sea surface temperature (SST) data are often provided as gridded products, typically at resolutions of order 0.05 degrees from satellite observations to reduce data volume at the request of data users and facilitate comparison against other products or models. Sampling uncertainty is introduced in gridded products where the full surface area of the ocean within a grid cell cannot be fully observed because of cloud cover. In this paper we parameterise uncertainties in SST as a function of the percentage of clear-sky pixels available and the SST variability in that subsample. This parameterisation is developed from Advanced Along Track Scanning Radiometer (AATSR) data, but is applicable to all gridded L3U SST products at resolutions of 0.05-0.1 degrees, irrespective of instrument and retrieval algorithm, provided that instrument noise propagated into the SST is accounted for. We also calculate the sampling uncertainty of ~0.04 K in Global Area Coverage (GAC) Advanced Very High Resolution Radiometer (AVHRR) products, using related methods.
Resumo:
Since the first reported case of HIV infection in Hong Kong in 1985, only two HIV-positive individuals in the territory have voluntarily made public their seropositivity: a British dentist named Mike Sinclair, who disclosed his condition to the media in 1992 and died in 1995, and J.J. Chan, a local Chinese disc-jockey, who came forward in 1995 and died just a few months later. When they made their revelations, both became instant media personalities and were invited by the Hong Kong Government to act as spokespeople for AIDS awareness and prevention. Mike Sinclair worked as an education officer for the Hong Kong AIDS Foundation, and J.J. Chan appeared in Government television commercials about AIDS. This article explores how the public identities of these two figures were constructed in the cultural context of Hong Kong where both Eastern and Western values exist side by side and interact. It argues that the construction of `AIDS celebrities' is a kind of `identity project' negotiated among the players involved: the media, the Government, the public, and the person with AIDS (PWA) himself, each bringing to the construction their own `theories' regarding the self and communication. When the players in the construction hold shared assumptions about the nature of the self and the role of communication in enacting it, harmonious discourses arise, but when cultural models among the players differ, contradictory or ambiguous constructions result. The effect of culture on the way `AIDS celebrities' are constructed has implications for the way societies view the issue of AIDS and treat those who have it. It also helps reveal possible sites of difficulty when individuals of different cultures communicate about the issue.
Resumo:
This paper is about the use of natural language to communicate with computers. Most researches that have pursued this goal consider only requests expressed in English. A way to facilitate the use of several languages in natural language systems is by using an interlingua. An interlingua is an intermediary representation for natural language information that can be processed by machines. We propose to convert natural language requests into an interlingua [universal networking language (UNL)] and to execute these requests using software components. In order to achieve this goal, we propose OntoMap, an ontology-based architecture to perform the semantic mapping between UNL sentences and software components. OntoMap also performs component search and retrieval based on semantic information formalized in ontologies and rules.
Resumo:
Texture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.