803 resultados para McGill university. Library. Gest Chinese Research Library.
Resumo:
Ships and offshore structures, that encounter ice floes, tend to experience loads with varying pressure distributions within the contact patch. The effect of the surrounding ice adjacent to that which is involved in the contact zone has an influence on the effective strength. This effect has come to be called confinement. A methodology for quantifying ice sample confinement is developed, and the confinement is defined using two non-dimensional terms; a ratio of geometries and an angle. Together these terms are used to modify force predictions that account for increased fracturing and spalling at lower confinement levels. Data developed through laboratory experimentation is studied using dimensional analysis. The characteristics of dimensional analysis allow for easy comparison between many different load cases; provided the impact scenario is consistent. In all, a methodology is developed for analyzing ice impact testing considering confinement effects on force levels, with the potential for extrapolating these tests to full size collision events.
Resumo:
The work described in this thesis was conducted with the aim of: 1) investigating the binding capabilities of calix[4]arene-functionalized microcantilevers towards specific metal ions and 2) developing a new16-microcantilever array sensing system for the rapid, and simultaneous detection of metal ions in fresh water. Part I of this thesis reports on the use of three new bimodal calix[4]arenes (methoxy, ethoxy and crown) as potential host/guest sensing layers for detecting selected ions in dilute aqueous solutions using single microcantilever experimental system. In this work it was shown that modifying the upper rim of the calix[4]arenes with a thioacetate end group allow calix[4]arenes to self-assemble on Au(111) forming complete highly ordered monolayers. It was also found that incubating the microcantilevers coated with 5 nm of Inconel and 40 nm of Au for 1 h in a 1.0 M solution of calix[4]arene produced the highest sensitivity. Methoxy-functionalized microcantilevers showed a definite preference for Ca²⁺ ions over other cationic guests and were able to detect trace concentration as low as 10⁻¹² M in aqueous solutions. Microcantilevers modified with ethoxy calix[4]arene displayed their highest sensitivity towards Sr²⁺ and to a lesser extent Ca²⁺ ions. Crown calix[4]arene-modified microcantilevers were however found to bind selectively towards Cs⁺ ions. In addition, the counter anion was also found to contribute to the deflection. For example methoxy calix[4]arene-modified microcantilever was found to be more sensitive to CaCl₂ over other water-soluble calcium salts such as Ca(NO₃)₂ , CaBr₂ and CaI₂. These findings suggest that the response of calix[4]arene-modified microcantilevers should be attributed to the target ionic species as a whole instead of only considering the specific cation and/or anion. Part II presents the development of a 16-microcantilever sensor setup. The implementation of this system involved the creation of data analysis software that incorporates data from the motorized actuator and a two-axis photosensitive detector to obtain the deflection signal originating from each individual microcantilever in the array. The system was shown to be capable of simultaneous measurements of multiple microcantilevers with different coatings. A functionalization unit was also developed that allows four microcantilevers in the array to be coated with an individual sensing layer one at the time. Because of the variability of the spring constants of different cantilevers within the array, results presented were quoted in units of surface stress unit in order to compare values between the microcantilevers in the array.
Resumo:
Support services are important to the mental and physical well-being of survivors of intimate partner violence. However, researchers and service providers note that survivors seldom report violence to formal domestic violence services in Ghana. Despite calls from service providers for Ghanaians to report domestic violence, few studies have focused on women’s knowledge and perceptions of formal domestic violence services in Ghana and how these perceptions influence their help-seeking behaviour. This thesis presents qualitative findings on Ghanaian women's knowledge and perceptions of formal domestic violence services. Also, challenges to service delivery are explored. Results revealed that awareness among respondents of available services was low. Additionally, most respondents had negative perceptions of these formal services. This study demonstrates that more educational campaigns need to be carried out to raise awareness among Ghanaians on domestic violence and the formal interventions available in the country. Additionally, service providers and policy makers must formulate programmes and policies that are better suited to the uniqueness of the Ghanaian situation.
Resumo:
How experience alters neuronal ensemble dynamics and how locus coeruleus-mediated norepinephrine release facilitates memory formation in the brain are the topics of this thesis. Here we employed a visualization technique, cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH), to assess activation patterns of neuronal ensembles in the olfactory bulb (OB) and anterior piriform cortex (aPC) to repeated odor inputs. Two associative learning models were used, early odor preference learning in rat pups and adult rat go-no-go odor discrimination learning. With catFISH of an immediate early gene, Arc, we showed that odor representation in the OB and aPC was sparse (~5-10%) and widely distributed. Odor associative learning enhanced the stability of the rewarded odor representation in the OB and aPC. The stable component, indexed by the overlap between the two ensembles activated by the rewarded odor at two time points, increased from ~25% to ~50% (p = 0.004-1.43E⁻4; Chapter 3 and 4). Adult odor discrimination learning promoted pattern separation between rewarded and unrewarded odor representations in the aPC. The overlap between rewarded and unrewarded odor representations reduced from ~25% to ~14% (p = 2.28E⁻⁵). However, learning an odor mixture as a rewarded odor increased the overlap of the component odor representations in the aPC from ~23% to ~44% (p = 0.010; Chapter 4). Blocking both α- and β-adrenoreceptors in the aPC prevented highly similar odor discrimination learning in adult rats, and reduced OB mitral and granule ensemble stability to the rewarded odor. Similar treatment in the OB only slowed odor discrimination learning. However, OB adrenoceptor blockade disrupted pattern separation and ensemble stability in the aPC when the rats demonstrated deficiency in discrimination (Chapter 5). In another project, the role of α₂-adrenoreceptors in the OB during early odor preference learning was studied. OB α2-adrenoceptor activation was necessary for odor learning in rat pups. α₂-adrenoceptor activation was additive with β-adrenoceptor mediated signalling to promote learning (Chapter 2). Together, these experiments suggest that odor representations are highly adaptive at the early stages of odor processing. The OB and aPC work in concert to support odor learning and top-down adrenergic input exerts a powerful modulation on both learning and odor representation.
Resumo:
Automation of managed pressure drilling (MPD) enhances the safety and increases efficiency of drilling and that drives the development of controllers and observers for MPD. The objective is to maintain the bottom hole pressure (BHP) within the pressure window formed by the reservoir pressure and fracture pressure and also to reject kicks. Practical MPD automation solutions must address the nonlinearities and uncertainties caused by the variations in mud flow rate, choke opening, friction factor, mud density, etc. It is also desired that if pressure constraints are violated the controller must take appropriate actions to reject the ensuing kick. The objectives are addressed by developing two controllers: a gain switching robust controller and a nonlinear model predictive controller (NMPC). The robust gain switching controller is designed using H1 loop shaping technique, which was implemented using high gain bumpless transfer and 2D look up table. Six candidate controllers were designed in such a way they preserve robustness and performance for different choke openings and flow rates. It is demonstrated that uniform performance is maintained under different operating conditions and the controllers are able to reject kicks using pressure control and maintain BHP during drill pipe extension. The NMPC was designed to regulate the BHP and contain the outlet flow rate within certain tunable threshold. The important feature of that controller is that it can reject kicks without requiring any switching and thus there is no scope for shattering due to switching between pressure and flow control. That is achieved by exploiting the constraint handling capability of NMPC. Active set method was used for computing control inputs. It is demonstrated that NMPC is able to contain kicks and maintain BHP during drill pipe extension.
Resumo:
In the current study, we examined how supraspinal and spinal excitability were altered bilaterally after unilateral anterior cruciate ligament reconstruction (ACLr). 7 participants with ACLr and 7 healthy controls underwent transcranial magnetic stimulation (TMS) and electrical stimulation. To evaluate supraspinal excitability, resting motor thresholds (RMT) and motor evoked potential (MEP) stimulus response curves (SRC) were used. To measure spinal excitability, H-reflex SRC gain was assessed. Mixed factorial ANOVAs were used to compare measures between limbs and between groups. Cohen’s d was used to assess effect sizes between groups. Data indicated no significant differences between subject groups or between limbs. However, large effect sizes were found between limbs for H-reflex gain and RMTs suggesting that ACLr can have an effect on some of the variables examined. This study identified decreases in strength in the injured limbs and that subjects with an ACL injury exhibited decreases in spinal and supraspinal excitability of the quadriceps compared to Healthy controls.
Resumo:
Presently, there are numerous Native English Teacher (NETs) teaching in Korean post-secondary educational (PSE) institutions. The aim of this thesis is to explore the views held by NETs with regards to their self-perceived teaching perspectives while working in a Korean PSE setting. The thesis also aims to answer the assertion made in the literature that English as Foreign Language (EFL) teachers are "acritical and atheoretical". To this end, the thesis intends to identify the extent of the NETs’ preference for social reform as a teaching perspective, the NETs stated reasons for identifying with roles as social reformers, how these views are reflected in the NETs’ practice (praxis), what the barriers impeding the adoption and enactment of social reform are, and how the NETs’ perspectives relate to critical pedagogy. The results reveal that NETs in Korean PSE do not align themselves with social reform, yet categorizing NETS as "acritical and atheoretical" may be overly-simplistic. The results show that there are three kinds of obstacles that prevent NETs from engaging more with social reform and being less acritical and atheoretical: 1) NETs teaching in Korean EFL are conflicted and/or confused about their roles as English teachers; 2) there are significant cultural constraints to teaching in Korean EFL as a NET; 3) there are significant pedagogical constraints to teaching in Korean EFL as a NET.
Resumo:
Successful dispersal and establishment of invasive anurans (frogs and toads) may be influenced by competitive exclusion and/or niche differentiation with competing species. I investigated the dispersal of anurans in western Newfoundland using anuran calling surveys and pond-edge visual encounter surveys. The Mink Frog, Lithobates septentrionalis, had dispersed ~50 km northeast from the original (2001) discovery location and ~34 km southwest; displaying spatial separation from Green Frogs, Lithobates clamitans, at landscape and local scales. Visual encounter surveys did not reveal any correlation between adult Mink Frogs and odonate competitors. Additionally, I assessed the impact of varying tadpole densities on removal of epilithic periphyton by providing epilithon covered substrates for American Toad, Anaxyrus americanus, tadpoles raised in laboratory or field enclosures. Higher tadpole densities resulted in smaller tadpoles that removed more periphyton from substrates. As anuran population ranges expand, there may be effects on ecological resources for vertebrate and invertebrate competitors.
Resumo:
This thesis investigates the potential legal utility of neurotechnologies which measure correlates of impulsive behaviors. Chapter 1 explains my philosophical position and how this position compares to others in the field. Chapter 2 explores some of the technical concepts which must be understood for the discussion of neurotechnologies and their applications to be fruitful. These chapters will be important for both explaining the capabilities of a neuroscientific approach to neural abnormalities as well as how they relate to the kind of regulation in which the law is engaged. The purpose of Chapter 3 will be a descriptive account of Canadian law where I will begin to explore how to apply ideas and experiments from neuroscience to specific areas of law. Chapter 3 will look at actual examples of Canadian criminal law and will span topics from the creation of law to the construction of appropriate sentences. Chapter 4 will debate if and how we should apply the neuroscientific perspective to the law given the ethical concerns surrounding the applications described in Chapter 3. The thrust of the chapter is that the development of the law does not occur in a vacuum and any alteration either to the laws themselves, how they are interpreted, or the technologies used to provide evidence, must have an ethical justification, that is, a way in which the proposed change will better meet the needs of society and the ethical objectives of the law. Sometimes these justifications can be drawn directly from constitutional documents, such as the Charter, or from the Criminal Code, while at other times these justifications depend upon arguments about furthering meaningful responsibility and therapeutic outcomes.
Resumo:
While there is an ever expanding body of research on various forms of meditation, there is currently a relative absence of academic literature on tonglen. A form of meditation which involves both visualizations and breathing elements, during tonglen one takes in the negativity and suffering experienced by others and, in return, sends back happiness and compassion. The current study explores the tonglen meditation experiences of individuals who have established sitting meditation practices. A qualitative, grounded theory approach was used in looking at what tonglen means to participants, how they engage with the practice, why they practice tonglen, and what they perceive to be the benefits of tonglen in the context of a 28 day practice period. Based on the findings from this study, a model was developed that describes the tonglen experiences of participants.
Resumo:
This research explores Bayesian updating as a tool for estimating parameters probabilistically by dynamic analysis of data sequences. Two distinct Bayesian updating methodologies are assessed. The first approach focuses on Bayesian updating of failure rates for primary events in fault trees. A Poisson Exponentially Moving Average (PEWMA) model is implemnented to carry out Bayesian updating of failure rates for individual primary events in the fault tree. To provide a basis for testing of the PEWMA model, a fault tree is developed based on the Texas City Refinery incident which occurred in 2005. A qualitative fault tree analysis is then carried out to obtain a logical expression for the top event. A dynamic Fault Tree analysis is carried out by evaluating the top event probability at each Bayesian updating step by Monte Carlo sampling from posterior failure rate distributions. It is demonstrated that PEWMA modeling is advantageous over conventional conjugate Poisson-Gamma updating techniques when failure data is collected over long time spans. The second approach focuses on Bayesian updating of parameters in non-linear forward models. Specifically, the technique is applied to the hydrocarbon material balance equation. In order to test the accuracy of the implemented Bayesian updating models, a synthetic data set is developed using the Eclipse reservoir simulator. Both structured grid and MCMC sampling based solution techniques are implemented and are shown to model the synthetic data set with good accuracy. Furthermore, a graphical analysis shows that the implemented MCMC model displays good convergence properties. A case study demonstrates that Likelihood variance affects the rate at which the posterior assimilates information from the measured data sequence. Error in the measured data significantly affects the accuracy of the posterior parameter distributions. Increasing the likelihood variance mitigates random measurement errors, but casuses the overall variance of the posterior to increase. Bayesian updating is shown to be advantageous over deterministic regression techniques as it allows for incorporation of prior belief and full modeling uncertainty over the parameter ranges. As such, the Bayesian approach to estimation of parameters in the material balance equation shows utility for incorporation into reservoir engineering workflows.
Resumo:
Youth homelessness is defined within the literature as youth who have left their homes and are living independent of parental figures and/or caregivers, have no stable residence or source of income, and lack access to the supports needed to make the challenging transition into adulthood (Canadian Observatory on Homelessness, 2015). Previous research studying homeless (or street-involved) youth has primarily focused on risk factors hindering the development of this population, and has largely ignored resilience, coping, and help-seeking behaviours. The current study examined the attachment styles (both categorically and dimensionally), psychological functioning, resilience, and help-seeking behaviours in street-involved youth of St. John’s, Newfoundland. Face-to face interviews were completed over a four-month period with 63 youth (42 males, 21 females) aged 15-29 (Mage = 20.00), recruited from a local community organization providing outreach services to street-involved youth. Results revealed the disproportionate struggles of the street-involved youth population, and highlighted higher levels of attachment insecurity, psychological distress and lower resilience compared to normative peers. Findings also showed a significant difference in psychological functioning, overall resilience, and emotional reactivity based on individual attachment style. In an exploratory model of help-seeking, a positive relationship was found between overall resilience (defined as a sense of mastery and sense of relatedness) and frequency of community service access. However, contrary to predictions, no relationships were found between frequency of community service access and attachment, psychological functioning, or emotional reactivity. Implications of the present findings in development of interventions for street-involved youth are discussed, in addition to strengths and limitations of the present research, and suggested areas of future inquiry.
Resumo:
The successful performance of a hydrological model is usually challenged by the quality of the sensitivity analysis, calibration and uncertainty analysis carried out in the modeling exercise and subsequent simulation results. This is especially important under changing climatic conditions where there are more uncertainties associated with climate models and downscaling processes that increase the complexities of the hydrological modeling system. In response to these challenges and to improve the performance of the hydrological models under changing climatic conditions, this research proposed five new methods for supporting hydrological modeling. First, a design of experiment aided sensitivity analysis and parameterization (DOE-SAP) method was proposed to investigate the significant parameters and provide more reliable sensitivity analysis for improving parameterization during hydrological modeling. The better calibration results along with the advanced sensitivity analysis for significant parameters and their interactions were achieved in the case study. Second, a comprehensive uncertainty evaluation scheme was developed to evaluate three uncertainty analysis methods, the sequential uncertainty fitting version 2 (SUFI-2), generalized likelihood uncertainty estimation (GLUE) and Parameter solution (ParaSol) methods. The results showed that the SUFI-2 performed better than the other two methods based on calibration and uncertainty analysis results. The proposed evaluation scheme demonstrated that it is capable of selecting the most suitable uncertainty method for case studies. Third, a novel sequential multi-criteria based calibration and uncertainty analysis (SMC-CUA) method was proposed to improve the efficiency of calibration and uncertainty analysis and control the phenomenon of equifinality. The results showed that the SMC-CUA method was able to provide better uncertainty analysis results with high computational efficiency compared to the SUFI-2 and GLUE methods and control parameter uncertainty and the equifinality effect without sacrificing simulation performance. Fourth, an innovative response based statistical evaluation method (RESEM) was proposed for estimating the uncertainty propagated effects and providing long-term prediction for hydrological responses under changing climatic conditions. By using RESEM, the uncertainty propagated from statistical downscaling to hydrological modeling can be evaluated. Fifth, an integrated simulation-based evaluation system for uncertainty propagation analysis (ISES-UPA) was proposed for investigating the effects and contributions of different uncertainty components to the total propagated uncertainty from statistical downscaling. Using ISES-UPA, the uncertainty from statistical downscaling, uncertainty from hydrological modeling, and the total uncertainty from two uncertainty sources can be compared and quantified. The feasibility of all the methods has been tested using hypothetical and real-world case studies. The proposed methods can also be integrated as a hydrological modeling system to better support hydrological studies under changing climatic conditions. The results from the proposed integrated hydrological modeling system can be used as scientific references for decision makers to reduce the potential risk of damages caused by extreme events for long-term water resource management and planning.
Resumo:
The social media classification problems draw more and more attention in the past few years. With the rapid development of Internet and the popularity of computers, there is astronomical amount of information in the social network (social media platforms). The datasets are generally large scale and are often corrupted by noise. The presence of noise in training set has strong impact on the performance of supervised learning (classification) techniques. A budget-driven One-class SVM approach is presented in this thesis that is suitable for large scale social media data classification. Our approach is based on an existing online One-class SVM learning algorithm, referred as STOCS (Self-Tuning One-Class SVM) algorithm. To justify our choice, we first analyze the noise-resilient ability of STOCS using synthetic data. The experiments suggest that STOCS is more robust against label noise than several other existing approaches. Next, to handle big data classification problem for social media data, we introduce several budget driven features, which allow the algorithm to be trained within limited time and under limited memory requirement. Besides, the resulting algorithm can be easily adapted to changes in dynamic data with minimal computational cost. Compared with two state-of-the-art approaches, Lib-Linear and kNN, our approach is shown to be competitive with lower requirements of memory and time.
Resumo:
This thesis investigates the numerical modelling of Dynamic Position (DP) in pack ice. A two-dimensional numerical model for ship-ice interaction was developed using the Discrete Element Method (DEM). A viscous-elastic ice rheology was adopted to model the dynamic behaviour of the ice floes. Both the ship-ice and the ice-ice contacts were considered in the interaction force. The environment forces and the hydrodynamic forces were calculated by empirical formulas. After the current position and external forces were calculated, a Proportional-Integral-Derivative (PID) control and thrust allocation algorithms were applied on the vessel to control its motion and heading. The numerical model was coded in Fortran 90 and validated by comparing computation results to published data. Validation work was first carried out for the ship-ice interaction calculation, and former researchers’ simulation and model test results were used for the comparison. With confidence in the interaction model, case studies were conducted to predict the DP capability of a sample Arctic DP vessel.