990 resultados para Markov states
Resumo:
Stationary velocity distribution functions are determined for a particle in a gravitational field driven by a vibrating surface in the limit of small dissipation. It is found that the form of the distribution function is sensitive to the mechanism of energy dissipation, inelastic collisions or viscous drag, and also to the form of the amplitude function of the vibrating surface. The velocity distributions obtained analytically are found to be in excellent agreement with the results of computer simulations in the limit of low dissipation. [S0031-9007(99)08898-5].
Resumo:
We study the distribution of residence time or equivalently that of "mean magnetization" for a family of Gaussian Markov processes indexed by a positive parameter alpha. The persistence exponent for these processes is simply given by theta=alpha but the residence time distribution is nontrivial. The shape of this distribution undergoes a qualitative change as theta increases, indicating a sharp change in the ergodic properties of the process. We develop two alternate methods to calculate exactly but recursively the moments of the distribution for arbitrary alpha. For some special values of alpha, we obtain closed form expressions of the distribution function. [S1063-651X(99)03306-1].
Resumo:
This paper reports the TR3 spectral studies on perfluorinated organic systems with the objective to understand the influence of perfluorination on the excited states. We have recorded the TR3 spectra and Raman excitation profiles of the triplet excited states of decafluorobenzophenone and fluoranil. It is found that the influence of perfluorination is more pronounced in the triplet excited state than the ground state and thus leads to enhanced reactivity for perfluorinated compounds through larger structural distortions.
Resumo:
We consider the problem of wireless channel allocation to multiple users. A slot is given to a user with a highest metric (e.g., channel gain) in that slot. The scheduler may not know the channel states of all the users at the beginning of each slot. In this scenario opportunistic splitting is an attractive solution. However this algorithm requires that the metrics of different users form independent, identically distributed (iid) sequences with same distribution and that their distribution and number be known to the scheduler. This limits the usefulness of opportunistic splitting. In this paper we develop a parametric version of this algorithm. The optimal parameters of the algorithm are learnt online through a stochastic approximation scheme. Our algorithm does not require the metrics of different users to have the same distribution. The statistics of these metrics and the number of users can be unknown and also vary with time. Each metric sequence can be Markov. We prove the convergence of the algorithm and show its utility by scheduling the channel to maximize its throughput while satisfying some fairness and/or quality of service constraints.
Resumo:
Recent studies on the Portevin-Le Chatelier effect report an intriguing crossover phenomenon from low-dimensional chaotic to an infinite-dimensional scale-invariant power law regime in experiments on CuAl single crystals and AlMg polycrystals, as function of strain rate. We devise fully dynamical model which reproduces these results. At low and medium strain rates, the model is chaotic with the structure of the attractor resembling the reconstructed experimental attractor. At high strain rates, power law statistics for the magnitudes and durations of the stress drops emerge as in experiments and concomitantly, the largest Lyapunov exponent is zero.
Resumo:
Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fe-12. The largest calculation involves the Fe-12 ring which spans a Hilbert space dimension of about 145x10(6) for the M-S=0 subspace. Our calculated gaps from the singlet ground state to the excited triplet state agree well with the experimentally measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for ferric wheels. The spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap between the ground and first excited states defining the inverse of the moment of inertia. We have studied the quantum dynamics of Fe-10 as a representative of ferric wheels. We use the low-lying states of Fe-10 to solve exactly the time-dependent Schrodinger equation and find the magnetization of the molecule in the presence of an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of the magnetization which is dependent on the amplitude of the ac field. We have also studied the torque response of Fe-12 as a function of a magnetic field, which clearly shows spin-state crossover.
Resumo:
We demonstrate a technique for precisely measuring hyperfine intervals in alkali atoms. The atoms form a three-level system in the presence of a strong control laser and a weak probe laser. The dressed states created by the control laser show significant linewidth reduction. We have developed a technique for Doppler-free spectroscopy that enables the separation between the dressed states to be measured with high accuracy even in room temperature atoms. The states go through an avoided crossing as the detuning of the control laser is changed from positive to negative. By studying the separation as a function of detuning, the center of the level-crossing diagram is determined with high precision, which yields the hyperfine interval. Using room temperature Rb vapor, we obtain a precision of 44 kHz. This is a significant improvement over the current precision of similar to1 MHz.
Resumo:
Inspired by the exact solution of the Majumdar-Ghosh model, a family of one-dimensional, translationally invariant spin Hamiltonians is constructed. The exchange coupling in these models is antiferromagnetic, and decreases linearly with the separation between the spins. The coupling becomes identically zero beyond a certain distance. It is rigorously proved that the dimer configuration is an exact, superstable ground-state configuration of all the members of the family on a periodic chain. The ground state is twofold degenerate, and there exists an energy gap above the ground state. The Majumdar-Ghosh Hamiltonian with a twofold degenerate dimer ground state is just the first member of the family. The scheme of construction is generalized to two and three dimensions, and illustrated with the help of some concrete examples. The first member in two dimensions is the Shastry-Sutherland model. Many of these models have exponentially degenerate, exact dimer ground states.
Resumo:
The existence of an optimal feedback law is established for the risk-sensitive optimal control problem with denumerable state space. The main assumptions imposed are irreducibility and a near monotonicity condition on the one-step cost function. A solution can be found constructively using either value iteration or policy iteration under suitable conditions on initial feedback law.
Resumo:
Examines the possible magnitude of suction in compacted states of clayey soils. From the test results, it is concluded that suction is zero in monotonically loaded unsaturated states. This implies that suction in compacted states should be equal to the compaction stress itself. However, as data previously reported in literature have often shown - suction is strongly related to the water content and not much affected by the compaction stress.
Resumo:
Cathodic reduction of oxygen in fuel cells is known to be enhanced on platinum alloys in relation to the platinum metal. The higher performance of the platinum alloys is as a result of the improved oxygen-reduction kinetics on the alloys but there is hardly any increase in the electrode platinum-surface-areas for the platinum alloys as compared to the platinum metal, and thus the higher performance is solely due to the enhanced electrocatalytic activity of the alloys as compared to the platinum metal. The present X-ray photoelectron spectroscopic (XPS) study on carbon-supported Pt, Pt–Co and Pt–Co–Cr electrocatalysts suggests the presence of a relatively lower Pt-oxide content on the alloys. The X-ray powder diffraction patterns for these electrocatalysts show that while the carbon-supported platinum electrocatalyst has a face-centered cubic (fcc) phase, carbon-supported Pt–Co and Pt–Co–Cr electrocatalysts exhibit a face-centered tetragonal (fct) phase. But, Pt electrocatalyst has a lower particle-size and, hence, a higher dispersion. Previous studies have shown higher activities on the Pt-alloys than on Pt, and have attributed it to changes in the electronic and structural characteristics of Pt. These changes can be correlated with the lower oxidation-state of Pt sites, as found in this study.
Resumo:
Backoff algorithms are typically employed in multiple-access networks (e.g., Ethernet) to recover from packet collisions. In this letter, we propose and carry out the analysis for three types of link-layer backoff schemes, namely, linear backoff, exponential backoff, and geometric backoff, on point-to-point wireless fading links where packet errors occur nonindependently. In such a scenario, the backoff schemes are shown to achieve better energy efficiency without compromising much on the link layer throughput performance.
Resumo:
BaTiO3 and Ba0.9Ca0.1TiO3 thin films were deposited on the p – type Si substrate by pulsed excimer laser ablation technique. The Capacitance – Voltage (C-V) measurement measured at 1 MHz exhibited a clockwise rotating hysteresis loop with a wide memory window for the Metal – Ferroelectric – Semiconductor (MFS) capacitor confirming the ferroelectric nature. The low frequency C – V measurements exhibited the response of the minority carriers in the inversion region while at 1 MHz the C – V is of a high frequency type with minimum capacitance in the inversion region. The interface states of both the MFS structures were calculated from the Castagne – Vaipaille method (High – low frequency C – V curve). Deep Level Transient Spectroscopy (DLTS) was used to analyze the interface traps and capture cross section present in the MFS capacitor. There were distinct peaks present in the DLTS spectrum and these peaks were attributed to the presence of the discrete interface states present at the semiconductor – ferroelectric interface. The distribution of calculated interface states were mapped with the silicon energy band gap for both the undoped and Ca doped BaTiO3 thin films using both the C – V and DLTS method. The interface states of the Ca doped BaTiO3 thin films were found to be higher than the pure BaTiO3 thin films.
Resumo:
Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274–329 K. At 298 K, values of [Delta]G°, [Delta]Cp, and Cm were 3.1 ± 0.2 kcal mol−1, 5.9 ± 0.8 kcal mol−1 K−1 (15.9 cal (mol-residue)−1 K−1), and 0.8 M, respectively, at pH 3.0 and 14.5 ± 0.4 kcal mol−1, 8.3 ± 0.7 kcal mol−1 K−1 (22.4 kcal (mol-residue)−1 K−1), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of [Delta]G° and [Delta]Cp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of [Delta]Cp per mol-residue for the molten globule is comparable to corresponding values of [Delta]Cp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of [Delta]Cp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.
Resumo:
SrTiO3:Pr3+,Al3+ phosphor samples with varying ratios of Sr/Ti/Al were prepared by the gel-carbonate method and the mechanism of enhancement of the red photoluminescence intensity therein was investigated. The photoluminescence (PL) spectra of SrTiO3:Pr3+ show both D-1(2) --> H-3(4) and P-3(0) --> H-3(4) emission in the red and blue spectral regions, respectively, with comparable intensity. The emission intensity of D-1(2) --> H-3(4) is drastically enhanced by the incorporation of Al3+ and excess Ti4+ in the compositional range Sr(Ti,Al-y)(O3+3y/2):Pr3+ (0.2 less than or equal to y less than or equal to 0.4) and SrTi1+xAlyO3+z:Pr3+ (0.2 less than or equal to x less than or equal to 0.5; 0.05 less than or equal to y less than or equal to 0.1; z = 2x + 3y/2) with the complete disappearance of the blue band. This cannot be explained by the simple point defect model as the EPR studies do not show any evidence for the presence of electron or hole centers. TEM investigations show the presence of exsolved nanophases of SrAl12O19 and/or TiO2 in the grain boundary region as well as grain interiors as lamellae which, in turn, form the solid-state defects, namely, dislocation networks, stacking faults and crystallographic shear planes whereby the framework of corner shared TiO6 octehedra changes over to edge-sharing TiO5-AlO5 strands as indicated from the Al-27 MAS NMR studies. The presence of transitional nanophases and the associated defects modify the excitation-emission processes by way of formation of electronic sub-levels at 3.40 and 4.43 eV, leading to magnetic-dipole related red emission with enhanced intensity. This is evidenced by the fact that SrAl12O19:Pr3+,Ti4+ shows bright red emission whereas SrAl12O19:Pr3+ does not show red photoluminescence.