987 resultados para Marine heterotrophic bacteria
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
We know the importance of treating water for human consumption because changes in the physicochemical and / or biological has been associated with various health problems, the quality of water intended for human consumption must meet potability standards established by governmental decree 518/2004. The aim of this study was to evaluate the quality of water supplied schools and daycare in the city of São Carlos - SP. We selected 31 schools and kindergartens, and at intervals of 3 months, two water samples taken at three different points - network, tank and fi lter - totaling 186 samples, with an interval of three months, to verify possible differences in sampling points and at different times. The samples were evaluated for the following parameters: presence of total coliform and fecal coliform / E. coli count of heterotrophic bacteria, determination of pH, fl uoride, free residual chlorine, turbidity and color. The largest number of samples outside the standard for coliform was coming from the fi lters and the network, heterotrophic bacteria in most samples was taken out of standard fi lters. In the physical-chemical analysis of samples as many non-standard pH occurred in the network, network, and fl uoride in the fi lter pair in the fi lter to free chlorine and turbidity in the reservoir. The parameter with a larger sample size was inadequate fl uoride. We need more attention to the conservation, cleaning and maintenance of building reservoirs and fi lters in schools and kindergartens of San Carlos, since the water was considered unfi t for consumption.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study used a multi-analytical approach based on traditional microbiological methods for cultivation and isolation of heterotrophic bacteria in the laboratory associated with the molecular identification of the isolates and physicochemical analysis of environmental samples. The model chosen for data integration was supported by knowledge from computational neuroscience, and composed by three modules: (i) microbiological parameters, contemplating taxonomic data obtained from the partial sequencing of the 16S rRNA gene from 80 colonies of heterotrophic bacteria isolated by plating method in PCA media. For bacterial colonies isolation were used water samples from Atibaia and Jaguarí rivers collected at the site of water captation for use in effluent treatment, upstream from the entrance of treated effluent from the Paulínia refinery (REPLAN/Petrobras) located in the Paulínia-SP municipality, from the output of the biological treatment plant with stabilization pond and from the raw refinery wastewater; (ii) chemical parameters, ending measures of dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), chloride, acidity CaCO3, alkalinity, ammonia, nitrite, nitrate, dissolved ions, sulfides, oils and greases; and (iii) physical parameters, comprising the pH determination, conductivity, temperature, transparency, settleable solids, suspended and soluble solids, volatile material, remaining fixing material (RFM), apparent color and turbidity. The results revealed interesting theoretical relationships involving two families of bacteria (Carnobacteriaceae and Aeromonadaceae). Carnobacteriaceae revealed positive theoretical relationships with COD, BOD, nitrate, chloride, temperature, conductivity and apparent color and negative theoretical relationships with the OD. Positive theoretical relationships were shown between Aeromonadaceae and OD and nitrate, while this bacterial family showed negative theoretical...
Resumo:
This study used a multi-analytical approach based on traditional microbiological methods for cultivation and isolation of heterotrophic bacteria in the laboratory associated with the molecular identification of the isolates and physicochemical analysis of environmental samples. The model chosen for data integration was supported by knowledge from computational neuroscience, and composed by three modules: (i) microbiological parameters, contemplating taxonomic data obtained from the partial sequencing of the 16S rRNA gene from 80 colonies of heterotrophic bacteria isolated by plating method in PCA media. For bacterial colonies isolation were used water samples from Atibaia and Jaguarí rivers collected at the site of water captation for use in effluent treatment, upstream from the entrance of treated effluent from the Paulínia refinery (REPLAN/Petrobras) located in the Paulínia-SP municipality, from the output of the biological treatment plant with stabilization pond and from the raw refinery wastewater; (ii) chemical parameters, ending measures of dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), chloride, acidity CaCO3, alkalinity, ammonia, nitrite, nitrate, dissolved ions, sulfides, oils and greases; and (iii) physical parameters, comprising the pH determination, conductivity, temperature, transparency, settleable solids, suspended and soluble solids, volatile material, remaining fixing material (RFM), apparent color and turbidity. The results revealed interesting theoretical relationships involving two families of bacteria (Carnobacteriaceae and Aeromonadaceae). Carnobacteriaceae revealed positive theoretical relationships with COD, BOD, nitrate, chloride, temperature, conductivity and apparent color and negative theoretical relationships with the OD. Positive theoretical relationships were shown between Aeromonadaceae and OD and nitrate, while this bacterial family showed negative theoretical...
Resumo:
The increasing contamination of aquatic environments motivates studies on the interactions among natural dissolved organic matter, metals, and the biota. This investigation focused on the organic exudates of the toxic cyanobacteria Cylindrospermopsis raciborskii as a Cu carrier through a three-level aquatic trophic chain (bacteria, protozoa, and copepod). The effects of bacteria activity and growth on the metal-organic complexes were evaluated through changes in free Cu2+ ions, total dissolved, and total particulate Cu. To be sure that the added copper would be complexed to the exudates, its complexing properties were previously determined. The cyanobacteria exudate-Cu complexes were furnished to bacteria that were further used as a food source to the protozoan Paramercium caudatum. This was then furnished as food to the copepod Mesocyclops sp. The results showed that, in general, the cyanobacterial exudates decreased Cu bioavailability and toxicity to the first trophic level (bacteria), but because the heterotrophic bacteria accumulated Cu, they were responsible for the transference for the otherwise low availability metal form. Both the bacteria and protozoan organisms accumulated Cu, but no metal accumulation was detected in the copepods.
Resumo:
[EN]Antarctic krill are known to release large amounts of inorganic and organic nutrients to the water column. Here we test the role of krill excretion of dissolved products in stimulating heterotrophic bacteria on the basis of three experiments where ammonium and organic excretory products released by krill were added to bacterial assemblages, free of grazers. Our results demonstrate that the addition of krill excretion products (but not of ammonium alone), at levels expected in krill swarms, greatly stimulates bacteria resulting in an order-of-magnitude increase in growth and production. Furthermore, they suggest that bacterial growth rate in the Southern Ocean is suppressed well below their potential by resource limitation. Enhanced bacterial activity in the presence of krill, which are major sources of DOC in the Southern Ocean, would further increase recycling processes associated with krill activity, resulting in highly efficient krill-bacterial recycling that should be conducive to stimulating periods of high primary productivity in the Southern Ocean.
Resumo:
This study aimed to identify the microbial contamination of water from dental chair units (DCUs) using the prevalence of Pseudomonas aeruginosa, Legionella species and heterotrophic bacteria as a marker of pollution in water in the area of St. Gallen, Switzerland. Water (250 ml) from 76 DCUs was collected twice (early on a morning before using all the instruments and after using the DCUs for at least two hours) either from the high-speed handpiece tube, the 3 in 1 syringe or the micromotor for water quality testing. An increased bacterial count (>300 CFU/ml) was found in 46 (61%) samples taken before use of the DCU, but only in 29 (38%) samples taken two hours after use. Pseudomonas aeruginosa was found in both water samples in 6/76 (8%) of the DCUs. Legionella were found in both samples in 15 (20%) of the DCUs tested. Legionella anisa was identified in seven samples and Legionella pneumophila was found in eight. DCUs which were less than five years old were contaminated less often than older units (25% und 77%, p<0.001). This difference remained significant (0=0.0004) when adjusted for manufacturer and sampling location in a multivariable logistic regression. A large proportion of the DCUs tested did not comply with the Swiss drinking water standards nor with the recommendations of the American Centers for Disease Control and Prevention (CDC).
Resumo:
The cruise with RV Tydeman was devoted to study permanently stratified plankton systems in the (sub)tropical ocean, which are characterised by a deep chlorophyll peak between 80 and 150 m. To minimise lateral effects by horizontal transport of nutrients and organic matter from river outflow and upwelling regions, stations were selected in the middle of the North Atlantic Ocean between the continents of America and Africa. (5 - 35° N and 50 - 15° W). Here the vertical distributions of light and nutrients control the abundance and growth of autotrophic algae in the thermically stratified water column. This phytoplankton is numerically dominated by the prokaryotic picoplankters Synechococcus spp. and Prochlorococcus spp., which are smaller than 2 ?m. The productivity of the 100 to 150 m deep euphotic zone can be high, because a high heterotrophic/autotrophic biomass ratio induces a rapid regeneration of nutrients and inorganic carbon. Primary grazers are mainly micro-organisms such as heterotrophic nannoflagellates and ciliates, which feed on the small algae and on bacteria. Heterotrophic bacteria can outnumber the autotrophic algae, because their number is related to the substrate pools of dissolved and particulate dead organic matter. These DOC and detritus pools reach equilibrium at a concentration, where the rate of their production (proportional to algal biomass) equals their mineralisation and sinking rate (proportional to the concentration and weight of POC and detritus). At a relatively low value of the weight-specific loss rates, the equilibrium concentration of these carbon pools and their load of bacteria can be high. The bacterial productivity is proportional to the mineralisation rate, which in a steady state can never be higher than the rate of primary production. Hence the ratio in turnover rate of bacteria and autotrophs tends to be reciprocally proportional to their biomass ratio.